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Forward 
This handbook is approved for use by all Departments and Agencies of the Department of Defense. 

  

Comments, suggestions, or questions on this document should be addressed to the GWG World Geodetic 

System (WGS) and Geomatics (WGSG) Focus Group, ATTN : Chair, WGS/Geomatics Standards Focus 

Group, ncgis-mail.nga.mil or to the National Geospatial-Intelligence Agency Office of Geomatics (SFN), 

Mail Stop L-41, 3838 Vogel Road, Arnold, MO 63010 or emailed to GandG@nga.mil. 

Summary of Changes and Modifications 

Revision Date Status Description 

Version 1.1 2020-02-20  (1) Minor re-writes/re-
organizations throughout the 
document for improved overall 
readability; 
(2) Expanded Section 4 (Sections 
4.1 and 4.2) using a selected subset  
of Section 5 content for an 
improved “overview” to Section 5; 
(3) Added the computation of 
predictive statistics applicable to an 
arbitrary but specified direction in 
𝑛-dimensional space, termed the 
directed percentile (Section 5.4.5); 
(4) Added the method of 
Covariance Intersection that can be 
used to rigorously estimate a state 
vector using multiple initial 
estimates with unknown 
correlation of errors between them 
(Section 5.4.7.2); 
(5) Added a generalized spdcf-
based error covariance matrix 
generation method (Appendix D); 
(6) Added partitioning of a large 
error covariance matrix for 
bandwidth reduction (Section 
5.10.2) 
(7) Added and reallocated some 
definitions (from Section 3.1.3 to 
Appendix A) 
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1 Scope 
This Technical Guidance Document (TGD 2a) is a specific topic document on Predictive Statistics, part of a 

series of information and guidance documents regarding Accuracy and Predicted Accuracy in the National 

System for Geospatial Intelligence (NSG).  As the title suggests, it focuses on methods, practices and 

applications of predictive statistics within the context of a larger scope of work which includes a more 

generalized overview and additional topic specific technical guidance.  Documents in this series are listed 

below: 

TGD 1  Accuracy and Predicted Accuracy in the NSG:  Overview and Methodologies 

TGD 1-G Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms 

TGD 2a   Accuracy and Predicted Accuracy in the NSG: Predictive Statistics    

TGD 2b   Accuracy and Predicted Accuracy in the NSG: Sample Statistics    

TGD 2c   Accuracy and Predicted Accuracy in the NSG: Specification and Validation   

TGD 2d   Accuracy and Predicted Accuracy in the NSG: Estimators and Quality Control  

TGD 2e   Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation   

TGD 2f   Accuracy and Predicted Accuracy in the NSG: External Data and Quality Assessment 

All documents in the series, “Accuracy and Predicted Accuracy in the NSG”, are intended to provide 

technical guidance to inform the development of geospatial data accuracy characterization for NSG 

GEOINT collectors, producers and consumers -- accuracy characterization as required to describe the 

trustworthiness of geolocations for defense and intelligence use and to support practices that acquire, 

generate, process, exploit, and provide geolocation data and information based on geolocation data.  

Today, both the sources and desired uses for geospatial data are quickly expanding.  Throughout the NSG, 

trusted conveyance of geospatial accuracy is broadly required for a variety of traditional and evolving 

missions including those supported by manual, man-in-the-loop, and automated processes.  This guidance 

is the foundation layer for a collection of common techniques, methods, and algorithms ensuring that 

geospatial data within the NSG can be clearly requested, delivered and evaluated as fit for desired purpose 

whether by decision makers, intelligence analysts, or as input to further processing techniques.   

TGD 2a contains references to and is referenced by other Technical Guidance Documents.  The documents 

in this series, TGD 1 and TGD 2b – TGD 2f, also have cross-references among themselves.  All Technical 

Guidance Documents also reference external public as well as “NGA approved for public release” 

documents for further insight/details.  While each individual document contains definitions for important 

relevant terms, TGD 1-G compiles all important terms and respective definitions of use particular to this 

series of documents to ensure continuity and provide ease of reference. 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
2 

The TGD 2 documents, including this document focused on predictive statistics, are also considered 

somewhat top-level in that they are not directed at specific systems.  They do provide general guidance, 

technical insight, and recommended algorithms.  The relationship of the Technical Guidance Documents 

with specific GEOINT Standards documents and specific Program Requirements documents is presented 

in Figure 1-1, where arrows refer to references.  That is, in general, specific product requirement 

documents reference specific GEOINT standards documents which reference specific technical guidance 

documents. 

 

Figure 1-1: The relationships between the Technical Guidance Documents, GEOINT Standards 

Documents, and Program Requirement Documents 

Accuracy and Predicted Accuracy in the NSG: Predictive Statistics, Technical Guidance Document (TGD) 2a 

is for guidance only and cannot be cited as a requirement. 

  

Specific NSG adopted 
GEOINT Standards 
for acquisition

Others
…

STANAG
…

TGD_1

TGD_2a TGD_2b TGD_2c TGD_2d TGD_2e TGD_2f

Technical Guidance Documents (TGD): Accuracy and Predicted Accuracy in the NSG

MIL-STD
…

NGA.STND.
…

Program 
Requirements 
Documents SOO

SOW
RFP
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2 Applicable Documents 
The documents listed below are not necessarily all of the documents referenced herein, but are those 

needed to understand the information provided by this information and guidance document. 

2.1 Government specifications, standards, and handbooks 
 

NGA.SIG.0026.01_1.2_ACCOVER, Accuracy and Predicted Accuracy in the NSG:  Overview and 

Methodologies, Technical Guidance Document (TGD) 1 

NGA.SIG.0026.02_1.1_ACCGLOS, Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms, 

Technical Guidance Document (TGD) 1-G 

NGA.SIG.0026.04_1.0_ACCSAMP, Accuracy and Predicted Accuracy in the NSG:  Sample Statistics, 

Technical Guidance Document (TGD) 2b    

NGA.SIG.0026.05_1.1_ACCSPEC, Accuracy and Predicted Accuracy in the NSG:  Specification and 

Validation, Technical Guidance Document (TGD) 2c 

NGA.SIG.0026.06_1.0_ACCESQC, Accuracy and Predicted Accuracy in the NSG:  Estimators and Quality 

Control, Technical Guidance Document (TGD) 2d 

NGA.SIG.0026.07_1.0_ACCMTCO, Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation, 

Technical Guidance Document (TGD) 2e 

NGA.SIG.0026.08_1.0_ACCXDQA, Accuracy and Predicted Accuracy in the NSG: External Data and 

Quality Assessment, Technical Guidance Document (TGD) 2f  
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3 Definitions 
There are a number of authoritative guides as well as existing standards within the NSG and Department 

of Defense for definitions of the identified key terms used in this technical guidance document.  In many 

cases, the existing definitions provided by these sources are either too general or, in some cases, too 

narrow or dated by intended purposes contemporary to the document's development and publication.  

The definitions provided in this document have been expanded and refined to explicitly address details 

relevant to the current and desired future use of accuracy in the NSG.  To acknowledge the basis and/or 

linage of certain terms defined in Section 3.1, we reference the following sources considered as either 

foundational or contributory: 

 

[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d]  ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by coordinates, 

as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, Version 

1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 

Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 

3.1 Key Terms Used in the Document  

3.1.1 Accuracy 

The range of values for the error in an object’s metric value with respect to an accepted reference value 

expressed as a probability.  [f]  

 Statements of accuracy may be developed through applications of predictive statistics or by 

sample statistics based on multiple independent samples of errors. 

http://www.oxforddictionaries.com/us/
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3.1.2 Error 

The difference between the observed or estimated value and its ideal or true value.   See Appendix A for 

a more detailed and augmented definition. [f]   

3.1.3 National System for Geospatial Intelligence (NSG) 

The operating framework supported by producers, consumers or influencers of geospatial intelligence 

(GEOINT).  Spanning defense, intelligence, civil, commercial, academic and international sectors, the NSG 

contributes to the overall advancement of the GEOINT function within the strategic priorities identified 

by the Functional Manager for Geospatial Intelligence in the role established by Executive Order 12333.  

The framework facilitates community strategy, policy, governance, standards and requirements to ensure 

responsive, integrated national security capabilities. [i] 

3.1.4 Predicted Accuracy 

The range of values for the error in a specific object’s metric value expressed as a probability derived from 

an underlying and accompanying detailed statistical error model.   

 If the statistical error model does not include the identification of a specific probability 

distribution, a Gaussian (or Normal) probability distribution is typically assumed in order to 

generate probabilities.  

 The term “Predicted” in Predicted Accuracy corresponds to the use of predictive statistics in the 

detailed statistical error model; it does not correspond to a prediction of accuracy applicable to 

the future since the corresponding error corresponds to a geolocation already extracted. 

3.1.5 Predictive Statistics 

Statistics corresponding to the mathematical modeling of assumed a priori error characteristics contained 

in a statistical error model. 

3.1.6 Sample Statistics 

Statistics corresponding to the analysis of a collection of physical observations, a sample of the population, 

as compared to an assumed true or an a priori value. 

3.1.7 Scalar Accuracy Metrics 

Convenient one-number summaries of geolocation accuracy and geolocation predicted accuracy 

expressed as a probability: (1) Linear Error (LE) corresponds to 90% probable vertical error, (2) Circular 

Error (CE) correspond to 90% probable horizontal radial error, and (3) Spherical Error (SE) corresponds to 

90% spherical radial error.  See Appendix A for a more detailed and augmented definition. [b],[f], and [h] 

3.1.8 Statistical Error Model 

Information which describes the error data corresponding to a given state vector.  The information 

includes the type of corresponding error representation (random variable, random vector, stochastic 

process, or random process), the category of statistics (predictive or sample), and associated statistical 

information including at a minimum the mean-value and covariance data. 
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3.2 Other Relevant Terms 
Appendix A contains definitions of the following additional terms relevant to the content of this 

document: 

 A priori  

 A posteriori  

 Absolute Horizontal Accuracy 

 Absolute Vertical Accuracy 

 Bias Error 

 CE-LE Error Cylinder 

 Circular Error 

 Confidence Ellipsoid 

 Correlated Error 

 Correlated Values  

 Covariance  

 Covariance Function 

 Covariance Intersection 

 Covariance Matrix  

 Cross-covariance Matrix 

 Deterministic Error 

 Directed Percentile 

 Distance Constant 

 Earth Centered Earth Fixed Cartesian 

Coordinate System 

 Error (augmented definition)  

 Error Ellipsoid 

 Estimator 

 External Data 

 Fusion 

 Gaussian (or Normal) probability 

distribution 

 Geodetic Coordinate System 

 Ground Truth 

 Homogeneous 

 Horizontal Error 

 Inter-state Vector Correlation 

 Intra-state Vector Correlation 

 Linear Error 

 Local Tangent Plane Coordinate System  

 Mean-Value  

 Metadata 

 Monte-Carlo Simulation 

 Multi-image Geopositioning (MIG) 

 Multi-state Vector Error Covariance 

Matrix 

 Order Statistics 

 Percentile 

 Precision 

 Predicted Accuracy (augmented 

definition) 

 Predicted Accuracy Model 

 Principal Matrix Square Root  

 Probability density function  

 Probability distribution 

 Probability distribution function 

 Quality Assurance 

 Quality Assessment 

 Radial Error 

 Random Error 

 Random Error Vector 

 Random Field  

 Random Variable  

 Random Vector  

 Realization 

 Relative Horizontal Accuracy 

 Relative Vertical Accuracy 

 Scalar Accuracy Metrics (augmented 

definition) 

 Sensor support data   

 Spatial Correlation 

 Spherical Error 

 Standard Deviation 

 State Vector 

 State Vector Error 

 Stationary  

 Stochastic Process 
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 Strictly Positive Definite Correlation 

Function (spdcf)  

 Systematic Error 

 Temporal Correlation 

 Time Constant  

 Uncertainty 

 Uncorrelated Error 

 Uncorrelated Values  

 Validation 

 Variance 

 Verification 

 Vertical Error 

 WGS 84   

 

 

 

3.3 Abbreviations and Acronyms 
 

Abbreviation/Acronym Definition 
1d One Dimensional 

2d Two Dimensional 

3d Three Dimensional 

cdf cumulative probability distribution function 
CE Circular Error 
CSM Community Sensor Model 
ECF Earth Centered Fixed 
ENU East North Up 
GEOINT Geospatial Intelligence 

GPS Global Positioning System 
LE Linear Error 
NSG National System for Geospatial Intelligence 
pdf probability density function 
SE Spherical Error 
spdcf strictly positive definite correlation function 
TGD Technical Guidance Document 

UAV Unmanned Aerial Vehicle 
WGS 84 World Geodetic System 1984 
WLS Weighted Least Squares 
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4 Introduction to Predictive Statistics in the NSG 
This document describes predictive statistics and provides detailed technical guidance regarding their 

recommended use in the NSG.  We first start with some background definitions required for context: 

Accuracy in the NSG is defined as: “the range of values for the error in an object’s metric value expressed 

as a probability”.  Furthermore, this general definition can be sub-allocated to more specific accuracies.  

For example, we can define horizontal accuracy for a specific system as:  “the 90th percentile of horizontal 

(radial) geolocation error, where location is relative to a specified geodetic reference system”. 

Predicted accuracy in the NSG is defined as: “the range of values for the error in a specific object’s metric 

value expressed as a probability derived from an underlying and accompanying detailed statistical error 

model.”  The detailed statistical error model includes predictive statistics when in an operational 

environment.  (Sample statistics are used for accuracy/performance validation and verification, as well as 

inputs to the a priori modelling of predictive statistics.)  Underlying errors are represented as random 

vectors (variables), stochastic processes, and random fields. 

A top-level discussion of accuracy, predicted accuracy, predictive statistics, sample statistics, and their 

various differences and interrelationships are provided in TGD 1: “Accuracy and Predicted Accuracy in the 

NSG: Overview and Methodologies”.  Predicted accuracy is identified as critical to the optimal and reliable 

performance of an NSG system.  Predictive statistics are identified as the key component of predicted 

accuracy.  

 More specifically, predicted accuracy and corresponding predictive statistics support: 

 Reliable predictions of the accuracy (errors) in geolocation-related data, such as 3d geolocations, 

sensor pose or metadata, etc. 

o Computed in near real-time and without the benefit of “ground-truth” for comparison 

o Tailored to the specific data and how it was generated (collection geometries, etc.) 

 Optimal estimation of geolocation-related data  

o Based on the predicted accuracy of corresponding measurements for their proper 

weighting in corresponding estimators (Weighted Least Squares, Kalman filters, etc.), and  

in support of “rigorous error propagation”   

o Support of estimator internal Quality Control, such as measurement blunder detection 

and editing 

 Actionable intelligence 

4.1 Overview of Predictive Statistics and Document Content 
Now that background definitions and related concepts have been presented, we present an overview of 

the predictive statistics and related concepts and applications that are detailed in the next major section 

of this document: Section 5, “Methodologies and Algorithms in Predictive Statistics”.  The overview is 

aligned with the major sub-sections of Section 5 and may be considered a “guided tour” of its contents 

and also includes some additional comments.   



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
9 

Section 5.1 of this document begins by presenting an overview of predictive statistics, as well as applicable 

errors and their sources.  Relevant predictive statistics are: mean-value, covariance matrix, probability 

density function (pdf), and strictly positive definite correlation function (spdcf).  

An arbitrary error of interest associated with a particular geopositioning process is fundamentally 

represented as an 𝑛𝑥1 random error vector 𝜖𝑋 that corresponds to an 𝑛𝑥1 state vector 𝑋.  A simple 

example is a 3d geolocation, where the state vector 𝑋 = [𝑥 𝑦 𝑧]𝑇, its error 𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇, and 

where the superscript symbol “𝑇” corresponds to vector or matrix transpose.  The state vector 𝑋 

corresponds to an estimate of its true, but typically unknown, value 𝑋𝑡𝑟𝑢𝑒.  The error 𝜖𝑋  corresponds to 

their difference. 

The first three of the four predictive statistics are applicable to 𝜖𝑋: mean-value, covariance matrix, and 

pdf.  The fourth predictive statistic, spdcf, augments the first three predictive statistics in order to 

correspond to a collection of random error vectors {𝜖𝑋𝑖} associated with either a stochastic process or a 

random field.  The spdcf is discussed in Section 5.6 and in the sections that follow it. 

Section 5.2 presents detailed definitions of the predictive statistics for the random error vector 𝜖𝑋: mean-

value, covariance matrix, and probability density function. 

The mean-value is the expected value of error, the covariance matrix is the expected dispersion of errors 

about the mean-value, and the pdf is the detailed probability density of errors across their entire range 

of possible values.   The pdf is considered an optional predictive statistic as most applications either do 

not require a specific pdf or they assume a Gaussian (or Normal) distribution of errors in which case the 

pdf is completely characterized by the mean-value and the covariance matrix. 

The material in Section 5.2 is unavoidably technical, but various examples and graphics are presented in 

support, such as the following: 

The pdf of a Gaussian distribution of 2d random error vectors 𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇 is presented graphically in 

Figure 4-1, with a corresponding 2𝑥1 mean-value of error 𝜖𝑋̅̅̅̅  and 2𝑥2 error covariance matrix 𝐶𝑋 equal 

to: 

  𝜖𝑋̅̅̅̅ ≡ [
𝜖𝑥̅̅ ̅
𝜖𝑦̅̅ ̅]

= [
0
0
] and 𝐶𝑋 ≡ [

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦
2 ] = [

1 0.98
0.98 1

] , respectively.                                                  (4-1) 

The mean-value of both 𝜖𝑥 and 𝜖𝑦 is 0 meters as is typical and reasonable for predictive statistics, as 

opposed to sample statistics where values typically only approach 0 assuming that the geolocation system 

is bias-free.  The standard deviation of 𝜖𝑥 about its mean-value is 𝜎𝑥 = 1 meter, the standard deviation 

of 𝜖𝑦 about its mean-value is 𝜎𝑦 = 1 meter, and their (cross) covariance 𝜎𝑥𝑦 is equal to 0.98 meters-

squared.  The (cross) covariance can also be represented as 𝜎𝑥 ∙ 𝜎𝑦 ∙ 𝜌𝑥𝑦, where 𝜌𝑥𝑦 is the correlation 

coefficient and necessarily satisfying |𝜌𝑥𝑦| < 1.  The correlation coefficient is equal to 0.98 (98%) in this 

example. 
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Figure 4-1: Probability density versus 𝜖𝑥 and 𝜖𝑦 values in meters; high correlation between error 

components – whatever the value of 𝜖𝑥 may be, it is highly probable that the value of 𝜖𝑦 is very similar 

and vice versa 

The correlation coefficient is a measure of the statistical similarity between 𝜖𝑥 and 𝜖𝑦.  If equal to zero, 

the errors are assumed uncorrelated (independent).  In the particular example, the errors 𝜖𝑥 and 𝜖𝑦 are 

highly correlated, such as those that might correspond to the horizontal errors of an extracted 

geolocation using a stand-off imaging sensor.  Note: the errors 𝜖𝑥 and 𝜖𝑦 actually correspond to 𝑥 

and 𝑦, respectively, in the above figure. 

For contrast, Figure 4-2 illustrates the same pdf but with the correlation coefficient 𝜌𝑥𝑦 = 0: 
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Figure 4-2: Probability density versus 𝜖𝑥 and 𝜖𝑦 values in meters; zero correlation between the error 

components (independent errors) 

Also, regardless the value of the correlation coefficient, since the error covariance matrix characterizes 

the Gaussian pdf, the information in both Figures 4-1 and 4-2 can also be captured graphically by an error 

ellipsoid (ellipse) as illustrated later. 

Section 5.3 presents the properties and rigorous descriptors of the most important and practical 

predictive statistic, the 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋 associated with the 𝑛𝑥1 random error vector 𝜖𝑋. 

As discussed in Section 5.3, it is very important that an error covariance matrix is “valid” for applications 

of interest: not only symmetric (𝐶𝑋 = 𝐶𝑋
𝑇), but positive definite (all eigenvalues greater than 0), and 

therefore, invertible.  An invertible error covariance matrix is required in order to compute error 

ellipsoids, is critical for the proper performance and stability of estimators (Weighted Least Squares, 

Kalman filters, etc.), and is required for many other geolocation-related applications. 

The methods presented in this document for the generation of error covariance matrices ensure that they 

are valid.   However, it is important to understand the differences between a valid and an invalid error 

covariance matrix.  Figure 4-3 presents an example of a valid versus an invalid 3𝑥3 error covariance matrix 

– at first glance, they both seem reasonable.  However, the three correlation coefficients in the error 

covariance matrix on the right are incompatible (inconsistent).  Section 5.3 details the reason why. 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
12 

 

Figure 4-3: Valid versus invalid error covariance matrices, with corresponding eigenvalues; the invalid 

error covariance matrix has a negative eigenvalue; the dots “.” indicate symmetric matrices 

Finally, as discussed in Section 5.3, although a valid error covariance matrix is a necessity, we also want to 

compute realistic error covariance matrices, ones the reasonably approximate the true but unknown error 

covariance matrix.  This usually requires occasional feedback from sample statistics of actual errors 

computed off-line and based on “ground truth” that are used to “tune” the predictive error models. 

Section 5.4 defines an error (confidence) ellipsoid and describes how to compute, render, and interpret 

it.  The error ellipsoid is a rigorous, equivalent, and important visual counterpart to the error covariance 

matrix.  It can be of significant help to analysts or to operations personnel in support of the decisions that 

they make. 

The error ellipsoid presented in Figure 4-4 corresponds to geographic 3d location error, 𝜖𝑋 =

[𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇, a random error vector, and is based on the following 3𝑥3 error covariance matrix: 

𝐶𝑋 = [

𝜎𝑥
2 𝜌𝑥𝑦𝜎𝑥𝜎𝑦 𝜌𝑥𝑧𝜎𝑥𝜎𝑧

. 𝜎𝑦
2 𝜌𝑦𝑧𝜎𝑦𝜎𝑧

. . 𝜎𝑧
2

] = [
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9
. 122 0.8 ∙ 12 ∙ 9
. . 92

] meters-squared .                   (4-2) 

The error ellipsoid was computed as a 90% (0.9p) error ellipsoid, which means that there is a 90% 

probability that a 3𝑥1 error 𝜖𝑋 is within the ellipsoid.  Alternatively, if the 90% error ellipsoid is centered 

at the solution for the “target” location 𝑋 itself instead of zero, there is a 90% probability that the true 

location is within the ellipsoid.  When centered at 𝑋, the error ellipsoid is typically termed a confidence 

ellipsoid.  We are 90% confident that the true “target” location is within the 90% confidence ellipsoid.   

 

 

  = [
  .  . 
.   . 
. .  

] 

eig = 2.7, 0.3, 0.03 

Invalid Valid 

  = [
  .  . 
.   . 
. .  

] 

eig = 2.4,0.7,-0.1 
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Figure 4-4: The 90% (0.9p) probability error ellipsoid corresponding and equivalent to 𝐶𝑋; a Gaussian 

distribution of errors is assumed 

The general equation for an error ellipsoid specifies the 𝑛𝑥1 errors 𝜖𝑋 that make up its boundary: 

𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2.              (4-3) 

Therefore, in the example above, the 6 unique numbers in the upper triangular portion of 3𝑥3 error 

covariance matrix, along with the specified probability or level of confidence (90%), completely 

characterize the ellipsoid. 

Section 5.4 also derives the values of the scalar 𝑑 in the above equation that correspond to various desired 

levels of probability or confidence for 1d, 2d, and 3d locations.  It also references pseudo-code contained 

in Appendix B that renders a desired ellipsoid.  “Ellipsoid” is a general term, with equivalent terms: “line 

segment” if 1d, and “ellipse” if 2d. 

Directed percentile 

As summarized above, the error ellipsoid is an important and visual predictive statistic; for example, there 

is a 90% probability that a 3𝑥1 random error vector is within the boundary of the 90% error ellipsoid.  

However, sometimes we are also interested in the probability of error along a specific and specifiable 

direction, i.e., along a line in 3d-space.  The directed percentile provides this information in a convenient 

manner and is also detailed in Section 5.4.  This includes a comparison of the directed percentile to the 

radial of the corresponding error ellipsoid that is along the same specified direction.  A radial is a vector 

from the center of the error ellipsoid to a point on its boundary, i.e., a value of 𝜖𝑋  that satisfies Equation 

(4-3). 
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Comparison of error covariance matrices 

As an important and related topic to error ellipsoids and their underlying error covariance matrices, 

Section 5.4 details how to analytically compare error covariance matrices per se, e.g., covariance 𝐵 > 𝐴, 

where the two error covariance matrices 𝐴 and 𝐵 are necessarily of the same size (𝑛𝑥𝑛) and might 

correspond to different estimates of a geolocation of interest, for example.    

Such comparisons can support underlying analysis and design of geolocation systems, including estimator 

selection and performance (Weighted Least Squares, Kalman filters, etc.).  They can also support 

automated/automatic decision making regarding the selection of a “best” geolocation from multiple 

geolocations available from different sources, i.e., the one with the least uncertainty or expected 

magnitude of error. 

The comparison of the two error covariance matrices, 𝐵 > 𝐴, also includes the relationship between their 

corresponding error ellipsoids, as illustrated in Figure 4-5 using ellipses (𝑛 = 2).  Error ellipse 𝐴 (red) 

corresponds to error covariance matrix 𝐴 and error ellipse 𝐵 (blue) correspond to error covariance matrix 

𝐵.  The error ellipsoids correspond to any common level of probability (confidence), and the error 

covariance matrices are 2𝑥2 in this particular example.   

 

Figure 4-5: One consequence of the error covariance comparison 𝐵 > 𝐴: error ellipse 𝐴 (red) is better 

than error ellipse 𝐵 (blue) 

When 𝐵 > 𝐴, the left side of Figure 4-5 is applicable and error ellipse 𝐴 (red) is “better” than error 

ellipse 𝐵 (blue) – the entire red ellipse is contained within (and not including) the boundary of the blue 

ellipse.   The right side of Figure 4-5 is never applicable.   
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More precisely, when 𝐵 > 𝐴, any 2d error on the boundary of the blue ellipse corresponds to a specific 

2d error on the boundary of the red ellipse along the same radial that has lessor magnitude but 

corresponds to the same level of probability (density).  And since this level of probability is arbitrary (… , 

89%, 90%, 91%, …), errors associated with the red ellipse (error covariance matrix 𝐴), along a specific 

radial, are always expected to be “smaller” than those associated with the blue ellipse (error covariance 

matrix 𝐵). 

Covariance intersection and union 

In addition, the combination of two error covariance matrices 𝐴 and 𝐵 via their intersection (𝐶𝐴∩𝐵) and 

their union (𝐶𝐴∪𝐵) is described in Section 5.4 and is also extended to more than two error covariance 

matrices.   

The related Method of Covariance Intersection (ci) is also described.  In particular, it is used to compute a 

rigorous estimate of a state vector, typically containing sensor metadata and/or geolocations, based on 

multiple initial estimates of the state vector with unknown correlation of errors between them.  This is an 

important but fairly recent and relatively unknown technique in geolocation applications with a general 

example presented in Figure 4-6 corresponding to a two-dimensional state vector for ease of illustration.  

The confidence level for the ellipses is actually arbitrary as long as common. 

 

Figure 4-6: Covariance matrix  𝐶𝐴∩𝐵 is a practical upper bound for the true but unknown error covariance 

matrix for the estimate 𝑋𝑐𝑖 which is based on two initial estimates 𝑋𝑎 and 𝑋𝑏 with error covariance 

matrices 𝐴 and 𝐵, respectively, and with unknown correlation of errors between them. 

As derived in Section 5.4, the solution 𝑋𝑐𝑖 is identical to a WLS solution that incorrectly assumes zero 

correlation between the two initial estimates, but the corresponding 𝑋𝑐𝑖 solution’s error covariance 
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matrix 𝐶𝐴∩𝐵 is equal to 2 times the WLS solution error covariance matrix, the latter too small (optimistic) 

and the former appropriate.   

Equivalently, the error ellipsoid associated with 𝐶𝐴∩𝐵 is the same shape but a factor of √2 greater than 

the error ellipsoid that is associated with the WLS solution.  Why the use of √2 instead of 2?  Recall that, 

for example, if the state vector 𝑋 is a geolocation, the components of the error covariance matrices have 

units of meters-squared, whereas the error ellipsoids correspond to radials (e.g., semi-major and semi-

minor axes) with units of meters. 

Section 5.5 details practical approximations of the error covariance matrix (or equivalent error ellipsoid) 

for the predicted accuracy of 3d geolocations: the ubiquitous scalar accuracy metrics LE, CE, and SE.   These 

practical metrics of predicted accuracy are used throughout the geolocation community, but their 

“underpinnings” are not well known: their actual definitions, when to use and not to use, and how to 

compute them are all covered, including the availability of corresponding pseudo-code for their accurate 

computation.  Applications of scalar accuracy metrics range from the characterization (analytic or visual) 

of the predicted accuracy for a specific geolocation of interest, to the specification of the required 

accuracy of a Geolocation System. 

Figure 4-7 contrasts the scalar accuracy metric CE (circular error) with the corresponding 2d error or 

confidence ellipse – the former more “convenient” and the latter more informative.  CE is the radius of a 

circle that encloses a desired and specified level of probability, e.g. XX=90%.  In general, CE corresponds 

to horizontal errors of 3d geolocations.  Note that the circle requires more area than does the ellipse to 

enclose the same amount of probability – 90% in this example.  If the ellipse were more elongated, the 

contrast would be even greater.  The ellipse indicates the directions of greatest and least uncertainty.  Of 

course, both the circle and the ellipse correspond to the same underlying 2𝑥2 error covariance matrix and 

the same confidence level (90%). 

 

Figure 4-7: CE90 versus the 90% error ellipse. 
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Figure 4-8 contrasts scalar accuracy metrics with the error ellipsoid for 3d errors.  CE corresponds to 

horizontal errors, LE to vertical errors, and the ellipsoid to 3d errors.  Their corresponding probability or 

confidence level is also 90%, in this example. 

 

Figure 4-8: CE90-LE90 Cylinder vs 90 % Confidence Ellipsoid 

 

The top and bottom of the CE90-LE90 cylinder correspond to a circle with radius CE90 meters.  The wall 

of the cylinder is twice the length LE90 meters.  Note that the 3d ellipsoid requires significantly less volume 

than does the cylinder in order to enclose approximately the same amount of probability, i.e., contains 

significantly more information. 

SE90 could have also been used to approximate the 3d ellipsoid instead of LE90 and CE90.  SE90 

corresponds to the radius of a spheroid that encloses 90% probability.  It reduces the description based 

on scalar accuracy metrics from 2 numbers (LE90 and CE90) to one number (SE90).  However, although 

not shown, the spheroid requires even more volume than does the CE90-LE90 cylinder to enclose 90% 

probability. 

Section 5.6 “switches gears” and addresses the use of the more general multi-state vector and its 

corresponding multi-state random error vector and error covariance matrix.  It defines the multi-state 

vector as simply consisting of a collection of individual state vectors, all “stacked” together.  It then defines 

its corresponding multi-state vector error covariance matrix as consisting of the previously defined error 

covariance matrices for each of the individual state vectors, plus the various cross-covariance matrices 

corresponding to each pair of individual state vectors and their correlation of errors.  

This is illustrated in the following equation corresponding to 𝑚 individual state vectors and which also 

makes use of the expected value operator 𝐸 in the definition of the multi-state vector error covariance 

matrix for completeness and assumes that the mean-value of error is equal to 0 as is typical: 

 

 

-20
0

20

-20-1001020

-20

-10

0

10

20

YX

Z

 Ellipsoid 

prob:           0.9

vol: 13228.516

 Cylinder

CE90:        24.76 

LE90:        14.80

prob:           0.86 

vol: 57051.424



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
18 

𝑋 = [𝑋1
𝑇 . . 𝑋𝑚

𝑇 ]𝑇 , a column vector containing 𝑚 individual 𝑛𝑖𝑥1 state vectors, 𝑖 = 1. , , . 𝑚,      

휀𝑋 = [𝜖𝑋1
𝑇 . . 𝜖𝑋𝑚

𝑇 ]𝑇 , the corresponding random error (column) vector, 

𝐶𝑋 ≡ 𝐸{(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇} = 𝐸{𝜖𝑋𝜖𝑋𝑇} = 𝐸 {[

𝜖𝑋1𝜖𝑋1
𝑇 𝜖𝑋1𝜖𝑋2

𝑇

𝜖𝑋2𝜖𝑋1
𝑇 𝜖𝑋2𝜖𝑋2

𝑇
. . 𝜖𝑋1𝜖𝑋𝑚

𝑇

. . . .
. . . .

𝜖𝑋𝑚𝜖𝑋1
𝑇 𝜖𝑋𝑚𝜖𝑋2

𝑇
. . . .
. . 𝜖𝑋𝑚𝜖𝑋𝑚

𝑇

]} =

[

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

].                 (4-4)   

The use of the multi-state vector and corresponding error covariance matrix has many applications, 

including the representation of a collection of state vectors and their errors corresponding to a stochastic 

process, such as a time series of satellite position and/or attitude (pointing) metadata and their errors, 

which are temporally correlated.  The spdcf predictive statistic for the stochastic process, along with the 

individual state vectors’ error covariance matrices 𝐶𝑋𝑖, is used for the generation of the multi-state 

vector’s error cross-covariance matrices 𝐶𝑋𝑖𝑗,.  In this application, the individual state vectors in the 

collection are all of the same size and definition. 

Such a collection of state vectors and their errors might instead correspond to individual state vectors 

adjusted simultaneously in a batch weighted least squares (WLS) estimator.  In this case, the individual 

state vectors could correspond to a mixture of sensor pose (position and attitude) and geolocations, 

necessarily not all of the same size and definition.   The WLS solution process not only computes the (best 

estimate of) the multi-state vector, it computes 𝐶𝑋 as well, almost always with non-zero cross-covariance 

𝐶𝑋𝑖𝑗 which represents the correlation of solution errors induced by the solution process itself. 

Why care about the cross-covariance matrices (correlations)? 

The cross-covariance matrices in Equation (4-4) quantify the correlation of errors between the 

components of any pair of individual state vectors in the multi-state vector and serve an important role.   

For example, assume that 𝑚 individual state vectors correspond to 3d geolocations that were solved for 

simultaneously in a batch WLS estimator and later serve as control points for another application that 

solves for a different set of sensor pose and geolocations.  If the multi-state vector error covariance matrix 

does not include the 𝐶𝑋𝑖𝑗, then the control points cannot being weighted properly in the control process.  

If they are highly correlated, as is common, their weights will be too high by up to a factor of 𝑚 in the 

variance domain, which can lead to predicted accuracies for the new geolocations that are too optimistic 

by a factor √𝑚 in the standard deviation (or scalar accuracy metrics) domain, e.g., 1 meter instead of the 

correct 3 meters if there were 9 control points.  When correlated, control points have less information 

than when independent (uncorrelated). 

In addition, the cross-covariance is critical to the computation of predicted relative accuracy between any 

pair of individual state vectors of the same dimension and typically the same general definition in a multi-
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state vector.  Section 5.6 defines the relative error between any such pair of individual state vectors and 

derives its corresponding error covariance matrix (predicted relative accuracy) as follows: 

𝑟𝑒𝑙_𝜖𝑋𝑖𝑗 = 𝜖𝑋𝑖 − 𝜖𝑋𝑗                     (4-5) 

𝑟𝑒𝑙_𝐶𝑋𝑖𝑗 = 𝐶𝑋𝑖 + 𝐶𝑋𝑗 − 𝐶𝑋𝑖𝑗 − 𝐶𝑋𝑖𝑗
𝑇. 

If the individual state vectors are geolocations, it is not uncommon that predicted relative accuracy is 

significantly better than predicted (absolute) accuracy due to positive correlation of errors between the 

geolocations – common (highly correlated) errors cancel when subtracted.  For example, if the absolute 

accuracy of two geolocations is on the order of 2 meters, predicted relative accuracy will be on the order 

of (√2)2 = 2.8 meters (pessimistic) if the cross-covariance is ignored or unavailable, while the correct 

answer for predicted relative accuracy could be on the order of 0.5 meters, the actual value dependent 

on the degree of positive correlation.  

In summary, non-computation or unavailability of the full multi-state vector error covariance matrix in 

Equation (4.4) can lead to either significantly optimistic or significantly pessimistic results of predicted 

absolute and relative accuracy, depending on the particular application. 

Sections 5.7-5.10 build upon the above concept of a multi-state vector and its multi-state vector error 

covariance matrix defined in Section 5.6: 

 Section 5.7 discusses propagation of the multi-state vector error covariance matrix, an important 

process in “rigorous error propagation”.   

 Section 5.8 discusses generic methods for the generation of multi-state vector error covariance 

matrices: a priori modeling, batch estimators (e.g., WLS solution), Kalman filters, or smoothers 

 A priori modeling includes the use of spdcf   

 A Kalman filter also requires use of the “A matrix” to allow for the rigorous computation 

of the cross-covariance matrix between two sequential solutions (state vector estimates, 

typically at two different times of applicability) – a recommended and relatively simple 

enhancement to a “standard” Kalman filter which cannot compute the cross-covariance 

matrix without the “A matrix” or its equivalent. 

 Section 5.9 discusses generic methods for the practical representation and dissemination of the 

multi-state vector error covariance matrix: direct, “A matrix”, and spdcf. 

 Although the generic methods for representation and dissemination are related to the 

generic methods of generation (Section 5.8) they need not explicitly correspond. 

 Section 5.10 details the approximation of a multi-state vector error covariance matrix via spdcf 

for bandwidth reduction, i.e., the amount of data required to represent the error covariance 

matrix, as some of these error covariance matrices can be very large.   Other candidate methods 

are also presented. 

Of course, in all of these sections, the multi-state vector error covariance matrices must be theoretically 

valid (positive definite, invertible, etc.), which is guaranteed by the corresponding generation, 

representation, and dissemination techniques that are presented.   



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
20 

We close out this “guided tour” with more specific examples associated with Section 5.9, “Generic 

methods for the practical representation and dissemination of the multi-state vector error covariance 

matrix”, for those readers interested in a more detailed overview of this subject.  In particular, the use of 

strictly positive definite correlation functions, or spdcf, is illustrated.     

Section 5.9 (explicitly) presents an example of spdcf generation and representation (a priori modeling) of 

a multi-state vector error covariance matrix.  The multi-state vector contains three individual state vectors 

{𝑋1, 𝑋3, and 𝑋5} that are stacked together and are modeled as temporally correlated, such as those 

corresponding to a stochastic process {𝑋𝑖}, 𝑖 = 1, . . , 𝑚, with all of the 𝑛𝑖𝑥1 state vectors of common 

dimension (𝑛𝑥1).  The multi-state vector error covariance matrix is presented in Equation (4-6): 

  𝐶𝑋 =

[
 
 
 𝐶𝑋1 𝜌(𝛿𝑡13) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋3

1/2
) 𝜌(𝛿𝑡15) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋5

1/2
)

. 𝐶𝑋3 𝜌(𝛿𝑡35) ∙ (𝐶𝑋3
1/2

) (𝐶𝑋5
1/2

)

. . 𝐶𝑋5 ]
 
 
 

,                        (4-6) 

where the superscript “1/2” indicates principal matrix square root, readily available in MATLAB and in the 

functional libraries of other computer languages.  

Since all of the state vectors have a common dimension (𝑛𝑥1), 𝐶𝑋 is dimensioned 3𝑛𝑥3𝑛.  In addition, all 

of the submatrices in Equation (4-6) are dimensioned 𝑛𝑥𝑛.   They consist of the individual state vectors’ 

error covariance matrices 𝐶𝑋𝑖 and their cross-covariance matrices 𝐶𝑋𝑖𝑗 = 𝜌(𝛿𝑡𝑖𝑗) ∙ (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑗
1/2

), where 

𝑖 and 𝑗 equal 1, 3, or 5. 

If the stochastic process is stationary, all of the (𝑛𝑥𝑛) 𝐶𝑋𝑖 are identical.  If non-stationary, they can vary.  

The 𝜌(𝛿𝑡𝑖𝑗) are the scalar temporal correlation values computed using the spdcf evaluated at the delta 

time between the times of applicability of the two state vectors 𝑋𝑖  and 𝑋𝑗.  𝜌(𝛿𝑡𝑖𝑗) multiplies each 

element of the matrix (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑗
1/2

) in Equation (4-6), with the result the cross-covariance matrix 

between the errors in 𝑋𝑖  and 𝑋𝑗.  In general, the closer in time two state vectors, the higher the temporal 

correlation and expected similarity of their errors.  (𝛿𝑡𝑖𝑗  is also represented as ∆𝑡𝑖𝑗 in these documents.) 

Note that if the individual error covariance matrices 𝐶𝑋𝑖 are identical, (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑗
1/2

) is simply equal to 

𝐶𝑋𝑖.  Furthermore, it is not uncommon that the 𝐶𝑋𝑖 are also diagonal matrices, in which case all of the 

submatrices in Equation (4-6) are diagonal as well, i.e., 𝐶𝑋 is of a particularly simple form and easily 

assembled.   For example, assuming three 2d individual state vectors consisting of 𝑋𝑖 = [𝑥 𝑦]𝑖
𝑇, 𝐶𝑋 is 

equal to the following 6𝑥6 matrix: 

𝐶𝑋 =

[
 
 
 
 
 
 
𝜎𝑥

2 0

0 𝜎𝑦
2

𝜌(𝛿𝑡12)𝜎𝑥
2 0

0 𝜌(𝛿𝑡12)𝜎𝑦
2

𝜌(𝛿𝑡13)𝜎𝑥
2 0

0 𝜌(𝛿𝑡13)𝜎𝑦
2

.
𝜎𝑥

2 0

0 𝜎𝑦
2

𝜌(𝛿𝑡23)𝜎𝑥
2 0

0 𝜌(𝛿𝑡23)𝜎𝑦
2

. .
𝜎𝑥

2 0

0 𝜎𝑦
2

]
 
 
 
 
 
 

                      (4-7) 
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In addition, for a priori modeling purposes, only a common 𝐶𝑋𝑖 and a few scalar parameters defining the 

spdcf (e.g., time constant of exponential decay) need be supplied for a stationary stochastic process, 

usually based on general knowledge of the underlying error processes and occasionally “tuned” using 

sample statistics of corresponding errors. 

There are various families of spdcf that are available and that cover a wide range of correlation 

characteristics.  They can correspond to 1𝑑 temporal correlation or 𝑛𝑑 spatial correlation, where the 

dimension 𝑛 is arbitrary but typically between 1 and 3.  There can also be different spdcf for different 

components in the state vectors of interest, e.g., one for the correlation of errors in the x-component and 

a different one for correlation of errors in the y-component. 

Figure 4-9 presents various examples of spdcf for 1𝑑 correlation, with families detailed in Section 5.9, 

including those that immediately step-down from a correlation value of 1 when 𝛿𝑡 becomes greater than 

0.  These include those that correspond to the “CSM four parameter” family of spdcf. 

 

Figure 4.9: Examples of spdcf from various families: correlation versus delta time between random error 

vectors 

The following and final example of the applicability of a multi-state vector and its error covariance matrix 

corresponds to a random field: a collection of 3d geolocations contained in a 3d Point Cloud.  An spdcf 

models the spatial correlation (similarity) of errors 𝜖𝑋𝑖 between locations.  The spatial correlation is 

readily apparent in Figure 4-10 and corresponds to 2d horizontal errors (only) for ease of illustration.  The 

2d horizontal errors correspond to a grid of horizontal locations of the 3d geolocations contained in the 

Point Cloud.  The closer two geolocations, the greater their similarity of error.  The figure corresponds to 

an arbitrary but specific Point Cloud.  Operationally, another Point Cloud generated by a similar process 
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will have a different collection of errors but with statistically similar characteristics – magnitudes and 

patterns of similarity. 

 

Figure 4-10: A random field of horizontal errors [𝜖𝑥 𝜖𝑦]𝑇 versus a grid of horizontal locations of 3d 

locations 𝑋 = [𝑥 𝑦 𝑧]𝑇 possible in a 3d Point Cloud (one realization; red errors are interpolated 

values between locations; vectors were automatically scaled) 

The concepts presented in Section 5.9 and supporting sections can be used to efficiently and reasonably 

model the predicted accuracy of the 3d Point Cloud.  If the Point Cloud’s predicted accuracy is 

reasonably invariant across all of its geolocations, a common 3𝑥3 error covariance can be used in 

conjunction with an spdcf that models the spatial correlation versus the distance between two arbitrary 

geolocations in the Point Could.   Note that use of a common error covariance does not mean that the 

actual errors do not vary within the Point Cloud – it means that their expected magnitudes and inter-

relationships are “statistically bounded”. 

An equation similar to Equation (4-6) represents the predicted accuracy of any subset of geolocations of 

interest in the Point Cloud.  And since their error covariance matrix  (𝐶𝑋𝑖) is assumed constant, only one 

3𝑥3 error covariance matrix and a few parameters defining the spdcf need to be used in order to 

represent the predicted accuracy of the subset, i.e., their corresponding full multi-state vector error 

covariance matrix is easily assembled.   Due to the invariance of the predictive statistics across the Point 

Cloud, the random field is termed wide-sense homogeneous, the equivalent of a wide-sense stationary 

stochastic process. 

Furthermore, the above can also be generalized to use a different 𝐶𝑋𝑖 for various geolocations or regions 

of geolocation across the Point Cloud if need be in a manner that is still reasonably efficient – no explicit 
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cross-covariance matrices need be included with the Point Cloud metadata as they can still be computed 

using the appropriate 𝐶𝑋𝑖 and the defining parameters of the spdcf(s) that are included.  Due to the 

variation of the predictive statistics across the Point Cloud, the random field is termed non-

homogeneous.   This is further detailed in TGD 2f (Commodities data and its Quality Assessment). 

4.2 Guide to Detailed Technical Content 
The following is a guide or “roadmap” of the technical content of Section 5 of this document, 

“Methodologies and Algorithms in Predictive Statistics”.  It consists of a bulleted list of key topics and 

“take-aways” for quick reference.  See the previous Section 4.1 for a more integrated overview, including 

examples. 

 Section 5.1: Fundamentals of Predictive Statistics and Associated Errors  

 Overview of random error vectors 

 Overview of predictive statistics: mean, error covariance matrix, probability density 

function (pdf), strictly positive definite correlation function (spdcf) 

 Differences from sample statistics 

 Role in Geolocation Systems 

 Section 5.2: Predictive Statistics for Random Error Vectors: Definitions 

 Definitions of mean, error covariance matrix, and pdf 

 The Gaussian or Normal multi-variate pdf with examples 

 Section 5.3:  Properties and rigorous descriptors of the error covariance matrix  

 The “key” predictive statistic 

 Positive definite matrix; hence, positive eigenvalues and invertible 

 Captures correlation between error components – essential to many applications 

 “Valid” versus “pseudo-valid” versus “invalid” error covariance matrices; “realistic” error 

covariance matrices 

 Possible issues with the mean-value – typically zero as it should be for predictive (as 

opposed to sample) statistics, but when non-zero must be accounted for 

 Section 5.4:  Error ellipsoids: equivalent and visual descriptions of the error covariance matrix  

 How to interpret, compute, and render 

 Computation of percentiles of error along a specified direction in 𝑛-dimensional space 

 (Covariance matrix B) >= (Covariance matrix A) and implications 

 Definition and applications of the “union error ellipsoid” and “intersection error 

ellipsoid” 

 Application: Shared statistical error model via union of error covariance matrices 

 Application: the Method of Covariance Intersection to account for unknown correlations 

 Section 5.5:  Scalar accuracy metrics: Linear Error, Circular Error, and Spherical Error  

 Definitions and how to interpret 

 Ubiquitous and in need of computational standardization presented in this document  

 Rigorous derivations and practical but accurate algorithms and pseudo-code to compute  

 Section 5.6:  Multi-state vector error covariance matrix definition  

 Definition of underlying multi-state vector and its error 
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 Error covariance matrix of individual state vectors and error cross-covariance matrix 

between pairs of individual state vectors 

 Intra-state vector correlation and inter-state vector correlation 

 Representation of applicable error processes  

 Definition and computation of the relative error covariance matrix  

 Section 5.7:  Propagation of the multi-state vector error covariance matrix  

 Methods and properties 

 Section 5.8:  Generic methods for generation of the multi-state vector error covariance matrix  

 A priori modeling, including use of spdcf as well as use of sample statistics for “tuning” 

 Batch estimator output, e.g. Weighted Least Squares (WLS) 

 Sequential estimator output, e.g. Kalman filter (Kf) augmented with “A matrix” for cross-

covariance between state vector estimates 

 Section 5.9:  Generic methods for representation/dissemination of the multi-state vector error 

covariance matrix  

 Direct, e.g., WLS output of the solution’s error covariance matrix 

 “A matrix” for Kalman filter 

 Spdcf for stochastic process, random fields, and other applications 

 Section 5.10:  Approximation of a large multi-state vector error covariance matrix  

 Application of spdcf method ensures a valid error covariance matrix and bandwidth 

compression 

 Use of the above for improved summaries of predicted absolute and relative accuracies 

(CE and LE) over large geographic regions 

 Other methods for bandwidth reduction, such as covariance matrix partitioning 

 Section 5.11:  An overview of useful references and their content relative to various sections of 

the document.  Some, but not all, were also referenced directly in Sections 5.1-5.10. 

Some sections contain examples that are based on various aspects of image-based geopositioning; 

however, the same principles apply across the entire scope of the NSG. 

 

5 Methodologies and Algorithms in Predictive Statistics  
We now proceed with detailed methodologies and algorithms in predictive statistics.  The corresponding 

Sections 5.1-5.10 were previously summarized in Sections 4.1 (“guided tour”) and 4.2 (“roadmap”) for an 

overall and integrated introduction.  Section 5.11 also contains a list of relevant references organized per 

subsection of Section 5. 

The “guided tour” presented in Section 4.1 included some representative examples and graphics for 

general insight.  Section 5 itself also contains many of these specific examples and graphics as well as a 

significant number of others.  However, Section 5 also contains equations, derivations, theory, and proofs 

as needed in order to establish a rigorous theoretical underpinning.   
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In addition to equations and algorithms, Section 5 and related appendices also contain pseudo-code that 

renders confidence ellipsoids and computes scalar accuracy metrics (LE, CE, SE) at various specified levels 

of probability or confidence. 

5.1 Fundamentals of Predictive Statistics and Associated Errors 
Predictive statistics are used throughout the NSG.  They form important inputs and outputs between 

various collection, value-added processing, and exploitation modules. There are four general predictive 

statistics for associated errors: 

 Mean-value 

 Covariance matrix 

 Probability density function (pdf) 

 Strictly positive definite correlation function (spdcf). 

The above predictive statistics actually correspond to 𝑛𝑥1 random error vectors associated with 𝑛𝑥1 state 

vectors within various modules of the NSG, i.e., errors in the state vectors’ values relative to typically 

unknown “truth”.   For example, one such state vector could simply correspond to a single 3d geolocation, 

with its corresponding error represented as a 3𝑥1 random error vector. 

The term “random error vector” is more precisely defined as a random vector representation of error.  As 

such, a random error vector contains n random errors as components, each represented as a random 

variable.   

A component in a random error vector may be correlated with other components in the same random 

error vector (intra-state vector correlation).  Stochastic processes and random fields contain collections 

of random error vectors, with each member in a collection generally correlated with the other members 

to some degree (inter-state vector correlation).   

In general, correlation corresponds to the statistical similarity of errors.  See TGD 1 (Overview) for a 

general discussion of the different categories of random error vectors, including examples and the 

concept of different realizations – uncorrelated (independent) random error vectors corresponding to the 

same geolocation-related process and its predictive statistics.  Realizations are consistent with the use of 

the expected value 𝐸{} operator in the definitions of predictive statistics that follow in Section 5.2. 

One of the goals of this document is to address all practical forms of error representation (random error 

vector, stochastic process, random field, etc.).  Another related goal is to represent and address the effects 

of the correlation of errors: (1) between the components of a random error vector, or (2) between 

different random error vectors in a stochastic process or a random field, or (3) between multiple individual 

state vectors within a larger state vector estimated by a Weighted Least Squares (WLS) solution or other 

estimators.  Correlation or statistical similarity has a very large impact on both accuracy and predicted 

accuracy, as illustrated throughout Section 5 of this document. 

Overview: Predictive statistics of (stand-alone) random error vectors 
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A random error vector’s 𝑛𝑥1 mean-value and its 𝑛𝑥𝑛 covariance matrix about that mean-value are 

standard and reasonably well-defined predictive statistics.  The mean-value of a predictive error is 

typically zero unless specifically stated otherwise, i.e., all of its 𝑛 components are equal to zero. 

A random error vector’s probability density function is an optional “statistic”.  It defines the probability 

distribution of underlying error components or random variables.  If it corresponds to a Gaussian or 

Normal multi-variate distribution (the two terms are used interchangeably), its identity as such, along with 

the aforementioned mean and covariance, completely specify the distribution.  The term “multi-variate” 

is used when the number of components in the random error vector is greater than 1, i.e., 𝑛 > 1.  If a 

(multi-variate) probability density function is not identified (defined), it is usually assumed Gaussian.   

Note that for some processes, identification of a specific (multi-variate) probability distribution is not 

actually required.  For example, only the mean-value and error covariance matrix are required in order to 

implement a Best Linear Unbiased Estimator per TGD 2d (Estimators and QC).  No specific probability 

density need be assumed. 

Overview: Extension of predictive statistics to collections of random error vectors, such as stochastic 

processes and random fields 

This document extends the above predictive statistics associated with “stand-alone” random error vectors 

to collections of random error vectors associated with stochastic processes and random fields.   

For example, strictly positive definite correlation functions (spdcf) are used to model the temporal 

correlation of random error vectors associated with different but specific times in a stochastic process. 

They are also used to model the spatial correlation of random error vectors associated with different but 

specific locations in a random field.  The correlation of two random error vectors corresponds to their 

statistical similarity, i.e., if highly correlated, the two errors are expected to be nearly identical. 

The definition for the spdcf predictive statistic and corresponding applications are postponed until 

Sections 5.6 and 5.9, along with definition of a multi-state vector with corresponding multiple random 

error vectors. 

Predictive statistics are modelled statistics as opposed to sample statistics 

Predictive statistics are “modelled” statistics, in that they correspond to an a priori (mathematical) model 

or are the output of a computational process, like an estimator.  They are in contrast to sample statistics, 

which are typically generated “off-line” from a set of sampled errors using corresponding “ground truth”.  

Of course, there is interplay between the two types of statistics: predictive statistics affect system errors 

which are then (occasionally) sampled.  And sample errors can be used to better refine the predictive 

statistics and underlying predictive error models.  See TGD 2b (Sample Statistics) for a description of 

sample errors and related processing. 

Finally, multiples sets of predictive statistics are typically associated with Geolocation Systems and are 

inter-related in that they correspond to the inputs and outputs of the various modules that make-up the 
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system.  They affect each other, as outlined in Figure 5.1-1.  This is one reason why it is so important to 

properly generate and disseminate them in each module. 

 

 

Figure 5.1-1: The interrelationship between predictive statistics, as represented by the dissemination of 

error covariance matrix 𝐶𝑋, across different (color-coded) modules in a Geolocation System 

In the above figure, the primary predictive statistic, the error covariance matrix 𝐶𝑋, is illustrated, typically 

an a posteriori solution error covariance matrix generated by an estimator in a module.  This error 

covariance matrix is an output of the module and may be an input to one or more “down-stream” 

modules.   Module-specific a priori information, including a priori or modelled error covariance matrices, 

is not explicitly illustrated in the figure but may be read-in from corresponding (data-base) files.   

Section 5.2 now goes on to present the detailed definitions of the predictive statistics (mean-value, 

covariance matrix, pdf) for random error vectors and also includes related examples.  Some readers of 

this document may already be familiar with these definitions but still may benefit from a quick review in 

order to familiarize themselves with the corresponding notation used in this document.  

5.2 Predictive Statistics: Definitions of mean-value, covariance matrix, and pdf 
In this section we define the predictive statistics for “stand-alone” random error vectors, i.e., those not 

necessarily associated with a collection of random error vectors (e.g., stochastic process).  These 

predictive statistics consist of the mean-value, covariance matrix, and probability density function (pdf).  

Related concepts and functions are also defined, such as the (cumulative) probability distribution 

function, the Gaussian (Normal) distribution, etc. 
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In the following definitions, the superscript “𝑇” indicates vector (or matrix) transpose, the “overbar” 

indicates mean-value, 𝐸{} indicates expected value, 𝜖𝑥𝑖 indicates random variable, and all numbers are 

assumed real-valued.  Both 𝐸{} and random variables are defined themselves near the end of the 

definitions, along with the probability density function 𝑝𝑑𝑓𝑋. 

The state vector represents an arbitrary column vector of quantities of interest.  Its value differs from the 

(unknown) true value by a random error vector:   

State vector: 

𝑋 = [𝑋(1) . . 𝑋(𝑛)]𝑇 ≡ [𝑥1 . . 𝑥𝑛]𝑇,                        (5.2-1) 

an 𝑛𝑥1 column vector; 

Random error vector:  

𝜖𝑋 = [𝜖𝑋(1) . . 𝜖𝑋(𝑛)]𝑇 ≡ [𝜖𝑥1 . . 𝜖𝑥𝑛]𝑇,                       (5.2-2) 

an 𝑛𝑥1 column vector; 

Mean-value of the random error vector: 

𝜖𝑋̅̅̅̅ = 𝐸{𝜖𝑋} = [𝐸{𝜖𝑥1} . . 𝐸{𝜖𝑥𝑛}]𝑇,                        (5.2-3) 

an 𝑛𝑥1 column vector; 

Error covariance matrix of the random error vector about its mean-value: 

𝐶𝑋 = 𝐸{(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇} = [

. . . . . .

. . 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} . .

. . . . . .
] =                  (5.2-4) 

[

. . . . . .

. . 𝐶𝑋(𝑖, 𝑗) . .

. . . . . .
] ≡ [

𝜎1
2 𝜎12

𝜎21 𝜎2
2

. . 𝜎1𝑛

. . 𝜎2𝑛
. . . .

𝜎𝑛1 𝜎𝑛2

. . . .

. . 𝜎𝑛
2

],  

an 𝑛𝑥𝑛 matrix. 

The 𝜎𝑖
2 = 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)

2} are variances about the (component) mean, the 𝜎𝑖 are standard deviations 

about the mean, and the 𝜎𝑖𝑗 = 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} are covariances about the mean.  Note that 

since (𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�) = (𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖) by the properties of real-numbers, the error 

covariance matrix is symmetric by definition. 

Further note that: 

If  𝜖𝑋̅̅̅̅ = 0,  𝐶𝑋 = 𝐸{(𝜖𝑋)(𝜖𝑋)𝑇}, the latter also termed the “second moment”;                    (5.2-5) 
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If  𝜖𝑋̅̅̅̅ ≠ 0,  𝐶𝑋 = 𝐸{(𝜖𝑋)(𝜖𝑋)𝑇}- (𝜖𝑋̅̅̅̅ )(𝜖𝑋̅̅̅̅ )𝑇, the latter termed the “square”                   (5.2-6) 

of the “first moment”. 

 (Cumulative) probability distribution function of the random error vector 𝜖𝑋: 

𝑐𝑑𝑓𝑋,               (5.2-7) 

defined as the joint probability distribution of the random variables 𝜖𝑥1, .., 𝜖𝑥𝑛 , a scalar function of the 

𝑛-dimensional (component) value 𝜖𝑋, and “loosely” defined as the probability that an arbitrary value 𝜖𝑋′ 

is contained within the 𝑛-dimensional interval [(−∞, 𝜖𝑥1′), . . , (−∞, 𝜖𝑥𝑛′)].  (See Section 5.2.1 for further 

discussion.) 

Probability density function of the random error vector 𝜖𝑋: 

𝑝𝑑𝑓𝑋,              (5.2-8) 

“loosely” defined as the 𝑛-th order partial derivative of 𝑐𝑑𝑓𝑋, a scalar function of the n-dimensional value 

𝜖𝑋, i.e., 𝑝𝑑𝑓𝑋(𝜖𝑋) = (𝜕𝑛𝑐𝑑𝑓(𝜖𝑋)) /(𝜕𝜖𝑥1. . 𝜕𝜖𝑥𝑛).        

In Equations (5.2-3) – (5.2-6), 𝐸{} corresponds to the expected value taken over an (arbitrary) probability 

density function 𝑝𝑑𝑓𝑋.  For an arbitrary scalar function 𝑔(𝑋), its expected value is defined as: 

𝐸{𝑔(𝜖𝑋)} ≡ ∬…∫ 𝑔(𝜖𝑋)𝑝𝑑𝑓𝑋𝑑𝜖𝑥1. . 𝑑𝜖𝑥𝑛
+∞

−∞
,                                 (5.2-9) 

where the integration is taken over (−∞,+∞) for each of the 𝑛 error components, i.e., 𝑛 joint integrals 

taken over the entire 𝑛-dimensional (real-valued) space 𝑅𝑛.   

Thus, the mean-value is simply the expected value of (𝑛 components of) the random vector 𝜖𝑋 and the 

error covariance matrix about the mean-value is the expected value of (𝑛2components of)   (𝜖𝑋 −

𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇, where 𝜖𝑋̅̅̅̅  is considered a deterministic (pre-computed) statistic, i.e., 𝐶𝑋 = 𝐸{(𝜖𝑋 −

𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇}. 

The variance of a component of error 𝜖𝑥𝑖 in 𝜖𝑋 corresponds to matrix element 𝐶𝑋(𝑖, 𝑖) ≡ 𝜎𝑖
2.  The 

covariance (not the “covariance matrix”) between two components of error 𝜖𝑥𝑖 and 𝜖𝑥𝑗, in the same 𝜖𝑋, 

corresponds to matrix element 𝐶𝑋(𝑖, 𝑗) ≡ 𝜎𝑖𝑗.  It further defines the correlation (coefficient) 𝜌𝑖𝑗  between 

these two components of error as follows: 

𝜌𝑖𝑗 ≡ 𝜎𝑖𝑗/(𝜎𝑖𝜎𝑗); thus, 𝜎𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗                 (5.2-10) 

Note that 𝜌𝑖𝑗  is unit-less, and that |𝜌𝑖𝑗| < 1, 𝑖 ≠ 𝑗, as will be demonstrated later. 

5.2.1 Underlying probabilistic foundations 

The definitions presented in Section 5.2 are at an “engineering overview” level, and underlying 

probabilistic foundations are not needed for further applications in this or related documents.  However, 

for the sake of completeness, the following (jointly labeled “Equation” (5.2.1-1) for convenience) are 
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briefly mentioned, with further details found in reference [27], as well as more formal definitions for the 

probability distribution function and the probability density function: 

 There is an underlying Probability Space consisting of the triple:                      (5.2.1-1) 

{Experiment Space of all possible outcomes, Subsets of all possible collections of outcomes or 

Events (Borel field), the Probability Measure of an arbitrary event}. 

 Note: In this document, we also term an individual outcome a “realization”. 

 A random (error) vector consists of a vector of random variables (𝜖𝑥𝑖), each a mapping from 

every outcome in the Experiment Space to a number.  We assume that random variables are 

of the continuous type in this document, but these can be extended to include random 

variables of the discrete type. 

 The above number is assumed to be real-valued in this and related documents, but definitions 

can be augmented in a straightforward manner to include random variables as mapping to 

complex numbers.  Augmentation essentially consists of defining a probability density 

function as a joint density between the real and imaginary parts making up the complex 

numbers, and defining vector and matrix transpose as the transpose of the complex conjugate 

of the vector or matrix.  

5.2.2 Example: scalar Gaussian pdf and related statistics  

The above predictive statistics are further defined/illustrated for 𝑛 = 1 and the common (scalar) Gaussian 

or Normal distribution with probability density function 𝑝𝑑𝑓𝑥 as defined below (the explicit error notation 

“𝜖” was dropped for convenience in the following, a practice sometimes used throughout this document; 

furthermore, 𝑥 ≡ 𝑥1): 

Given the Gaussian probability density function, 𝑝𝑑𝑓𝑥 ≡
1

𝜎𝑥√2𝜋
𝑒−1/2((𝑥−�̅�)/𝜎𝑥)2:                (5.2.2-1)  

 

𝐸{𝑥) = ∫ 𝑥𝑝𝑑𝑓𝑥
+∞

−∞
𝑑𝑥 =

1

𝜎𝑥√2𝜋
∫ 𝑥𝑒−1/2((𝑥−�̅�)/𝜎𝑥)2∞

−∞
𝑑𝑥 = �̅�, the mean-value;              (5.2.2-2) 

 

𝐸{(𝑥 − �̅�)2} = ∫ (𝑥 − �̅�)2𝑝𝑑𝑓𝑥
+∞

−∞
𝑑𝑥 =

1

𝜎𝑥√2𝜋
∫ (𝑥 − �̅�)2𝑒−1/2((𝑥−�̅�)/𝜎𝑥)2∞

−∞
𝑑𝑥 = 𝜎𝑥

2,                   (5.2.2-3) 

the variance about the mean (the mean and variance are directly embedded in the Gaussian pdf itself); 

𝑝 = ∫ 𝑝𝑑𝑓𝑥
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
𝑑𝑥 =

1

𝜎𝑥√2𝜋
∫ 𝑒−1/2((𝑥−�̅�)/𝜎𝑥)2𝑑𝑥

∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
,                 (5.2.2-4) 

the probability contained within a region R (line), where the notation “∫ …  𝑑𝑥
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
”  indicates 

integration over the specified region 
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Figure 5.2.2-1: Examples of Gaussian probability density functions for a scalar error x 

In Figure 5.2.2-1 above, the blue curve corresponds to a pdf with mean=0 and standard deviation or 

“sigma” of 1 about the mean; the green curve corresponds to an identical pdf except that the mean=2; 

the red curve corresponds to a mean=0 but a standard deviation of 2.  Note that the standard deviation 

is a measure of the dispersion about the mean. 

And, of course, by definition of a Probability Space, the area under any of the 𝑝𝑑𝑓𝑥 curves above, taken 

over the interval (−∞,+∞), equals 1.  (When taken over the interval (−∞, 𝑥) this is a function of 𝑥 and 

termed the cumulative probability distribution function 𝑐𝑑𝑓𝑥.) 

Note that an arbitrary Gaussian or Normal distribution with mean 𝑚 and standard deviation 𝜎 is 

sometimes designated 𝑁(𝑚, 𝜎). 

5.2.3 Example: Multi-variate Gaussian pdf and related statistics 

These statistics are now generalized to an arbitrary random (error) vector and multi-variate or multi-

component Gaussian or Normal distribution (and again dropping the explicit error notation “𝜖” for 

convenience): 

Given a pdf of a multi-variate Normal distribution of a random vector 𝑋 = [𝑥1 . . 𝑥𝑛]𝑇, 

𝑝𝑑𝑓𝑋 ≡
1

(2𝜋)𝑛/2det (𝐶𝑋)1/2 𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  :                  (5.2.3-1) 
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𝐸{𝑋} ≡ ∬…∫ 𝑋𝑝𝑑𝑓𝑋𝑑𝑥1. . 𝑑𝑥𝑛
+∞

−∞
=                                (5.2.3-2) 

1

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ 𝑋𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥1. . 𝑑𝑥𝑛 = �̅�

+∞

−∞
, 

which is the mean-value of 𝑋.  

(Note: the above is the notational equivalent of the 𝑛𝑥1 column vector [

. .

∬…∫ 𝑥𝑖𝑝𝑑𝑓𝑋𝑑𝑥1. . 𝑑𝑥𝑛
+∞

−∞
. .

].) 

 

𝐸{(𝑋 − �̅�)(𝑋 − �̅�)𝑇} = ∬…∫ (𝑋 − �̅�)(𝑋 − �̅�)𝑇𝑝𝑑𝑓𝑋𝑑𝑥1. . 𝑑𝑥𝑛
+∞

−∞
=               (5.2.3-3) 

1

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ (𝑋 − �̅�)(𝑋 − �̅�)𝑇𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥1. . 𝑑𝑥𝑛

+∞

−∞
= 𝐶𝑋, 

which is the covariance of 𝑋 about the mean-value of 𝑋. 

 

(Note: the above is the notational equivalent of the 𝑛𝑥n matrix  

[

. . . . . .

. . ∬…∫ (𝑥𝑖 − �̅�𝑖)(𝑥𝑗 − �̅�𝑗)𝑝𝑑𝑓𝑋𝑑𝑥1. . 𝑑𝑥𝑛
+∞

−∞
. .

. . . . . .
].) 

 

𝑝 =
1

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ 𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥1. . 𝑑𝑥𝑛

∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
,               (5.2.3-4) 

which the probability contained within the 𝑛-dimensional region R. 

(In the above equations, the notation “∬…∫ …𝑑𝑥1. . 𝑑𝑥𝑛
+∞

−∞
” indicates integration from −∞ to ∞ over 

each of the variables 𝑥𝑖, 𝑖 = 1, . . , 𝑛; the notation “∬…∫ …𝑑𝑥1. . 𝑑𝑥𝑛
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
” indicates integration within 

the specified n-dimensional region 𝑅 over each of the variables 𝑥𝑖, 𝑖 = 1, . . , 𝑛.) 

 

For example, assume two different multi-variate Gaussian probability density functions, each 

corresponding to two (error) components (𝑛 = 2).   Both pdf’s have a vector mean-value of zero.  The 

first pdf has an 2𝑥2 error covariance matrix with diagonal elements (variance) equal to 1 and zero 

covariance between the two components (correlation=0), the second has the same error covariance 

matrix but has a non-zero covariance corresponding to high positive correlation (correlation coefficient 

𝜌12 = 0.98) between the two components.  

 More specifically:             
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𝑝𝑑𝑓𝑋 =
1

2𝜋
𝑒

−1/2([𝑥 𝑦]𝐼2𝑥2
−1 [

𝑥
𝑦])  

=
1

2𝜋
𝑒−1/2(𝑥2+𝑦2)  , for the first pdf;                     (5.2.3-5) 

𝑝𝑑𝑓𝑋 =
1

2𝜋(0.2)
𝑒

−1/2([𝑥 𝑦][
1 .98

.98 1
]
−1

[
𝑥
𝑦])  

≅
1

1.25
𝑒−1/2(25.3𝑥2+25.3𝑦2−49.5𝑥𝑦)  , for the second pdf. 

 

Figures 5.2.3-1 and 5.2.3-2 plot the first and second pdfs, respectively: 

 

Figure 5.2.3-1: Two-dimensional Gaussian pdf with zero correlation between components (duplicate of 

Figure 4-2) 
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Figure 5.2.3-2: Two-dimensional Gaussian pdf with high positive correlation between components 

(duplicate of Figure 4-1) 

5.2.4 Conditional expectations and correlation 

We can also define conditional distributions or pdfs as well.  In general, for two components 𝑥 and 𝑦, the 

conditional pdf of 𝑥 given 𝑦 is (and dropping the explicit error notation “𝜖” for convenience): 

𝑝𝑑𝑓(𝑥|𝑦) = 𝑝𝑑𝑓𝑥,𝑦/𝑝𝑑𝑓𝑦.                    (5.2.4-1) 

Therefore, assuming a Gaussian joint distribution 𝑝𝑑𝑓𝑥,𝑦 (aka a multi-variate or bivariate distribution with 

probability density function 𝑝𝑑𝑓𝑋, 𝑋 ≡ [𝑥 𝑦]𝑇), and with the value of 𝑦 known or “given”, the 

conditional pdf for 𝑥 given 𝑦 equals: 

𝑝𝑑𝑓(𝑥|𝑦) =
1

𝜎𝑥√2𝜋(1−𝜌𝑥,𝑦
2 )

𝑒
−

(𝑥−
𝜌𝑥,𝑦𝜎𝑥𝑦

𝜎𝑦
)2

2𝜎𝑥
2(1−𝜌𝑥,𝑦

2 ) , where                   (5.2.4-2) 

𝜌𝑥,𝑦 is the correlation coefficient between the components 𝑥 and 𝑦.  In addition, see Equations (5.2.3-1) 

and (5.2.2-1) for the general forms for 𝑝𝑑𝑓𝑋 = 𝑝𝑑𝑓𝑥,𝑦 and 𝑝𝑑𝑓𝑦, respectively.  The mean-values for both 

𝑋 and 𝑦 are also assumed to equal zero, i.e., 02𝑥1 and 01𝑥1, respectively. 

Based on the above conditional pdf, the conditional distribution of 𝑥 given 𝑦 corresponds to a scalar mean-

value for 𝑥 equal to 𝜌𝑥,𝑦𝜎𝑥𝑦/𝜎𝑦 and a variance about this mean-value equal to 𝜎𝑥
2(1 − 𝜌𝑥,𝑦

2 ). 
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Therefore, given a joint 𝑝𝑑𝑓𝑥,𝑦 that corresponds to the multi-variate 𝑝𝑑𝑓𝑋 of Figure 5.2.3-2, and a value 

of 𝑦 equal to 1, 𝑝𝑑𝑓(𝑥|𝑦) corresponds to Figure 5.2.4-1 below. 

 

Figure 5.2.4-1: Conditional pdf of 𝑥 given that 𝑦 equals 1 

The above conditional pdf corresponds to a mean-value of 
𝜌𝑥,𝑦𝜎𝑥𝑦

𝜎𝑦
= 0.98 for 𝑥 and a variance about the 

mean-value of 𝜎𝑥
2(1 − 𝜌𝑥,𝑦

2 ) = 0.0396 or a standard deviation ≅ 0.2.  That is, the expected value of 𝑥 is 

very close to the given value of 𝑦 with very little uncertainty (dispersion).  Obviously, the “a priori” 

correlation 𝜌𝑥,𝑦 = 0.98 has a tremendous influence on the results. 

Another way to look at correlation: even though we do not know the value of either 𝑥 or 𝑦 now, if they 

are highly correlated, and given the value of 𝑦 (or 𝑥) in the future, we can then accurately predict that the 

value of 𝑥 is a positive scalar multiple of the given value 𝑦 (negative scalar multiple, if the correlation is 

highly negative).  The scalar multiple approaches 1 (or -1) if the correlation is high and the variance of the 

two components are approximately the same value.  This is one illustration of the importance of 

correlation, and the need to reliably “capture it” within the appropriate error covariance matrix. 

5.2.5 Coordinate Systems 

Note that the underlying (assumed) Cartesian coordinate system for representation of the random error 

vector (Equation (5.2-2)) may differ from that for the state vector (Equation (5.2-1)) itself for practical 

modeling of predictive errors.  This is perfectly valid as long as there is an associated deterministic 

transformation between the two systems.  For example, if the state vector contains 3d location, it may be 
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relative to the WGS 84 (earth-centered, earth-fixed) system, whereas the coordinate system for its errors 

may be relative to a local tangent plane (ENU) system where component errors may be conveniently 

modeled as uncorrelated when appropriate.   Note that if a state vector 𝑋 in WGS 84 corresponds to the 

state vector 𝑋′ in ENU, we have: 

𝑋′ = Ω𝑋 + 𝑋0, where                    (5.2.5-1) 

Ω and 𝑋0 are a deterministic 3𝑥3 rotation matrix and 3𝑥1 vector offset, respectively. 

Therefore, the random error vector expressed in ENU is simply the following function of the random error 

vector expressed in WGS 84, which can be accounted for in “rigorous error propagation” (see Equation 

(5.3.2-1) and Section 5.7): 

𝜖𝑋′ = Ωϵ𝑋                     (5.2.5-2) 

5.3 Error Covariance Matrices: Properties and Rigorous Descriptors 
This section of the document makes no assumptions regarding the underlying probability distribution of 

errors, i.e., is applicable whether a Gaussian distribution or not.  It details the error covariance matrix and 

its various properties and descriptors applicable to a random error vector. 

Assume a single 𝑛𝑥1 state vector with its corresponding (previously defined) 𝑛𝑥1 random error vector, 

mean-value, and 𝑛𝑥𝑛 valid error covariance matrix about the mean written as follows:  

𝜖𝑋 = [𝜖𝑋(1) . . 𝜖𝑋(𝑛)]𝑇 ≡ [𝜖𝑥1 . . 𝜖𝑥𝑛]𝑇;       (5.3-1) 

𝜖𝑋̅̅̅̅ = [𝜖𝑋̅̅̅̅ (1) . . 𝜖𝑋̅̅̅̅ (𝑛)]𝑇 ≡ [𝜖𝑥1̅̅ ̅̅ . . 𝜖𝑥𝑛̅̅ ̅̅ ̅]𝑇;       (5.3-2) 

𝐶𝑋 = [

. . . . . .

. . 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} . .

. . . . . .
] ≡ [

𝜎1
2 𝜎12

𝜎21 𝜎2
2

. . 𝜎1𝑛

. . 𝜎2𝑛
. . . .

𝜎𝑛1 𝜎𝑛2

. . . .

. . 𝜎𝑛
2

].    (5.3-3) 

A valid 𝑛𝑥𝑛 error covariance matrix is a wonderful object.   It is completely characterized/defined, in 

conjunction with Equation (5.3-3), as follows:  

 Any symmetric, 𝑛𝑥𝑛 positive definite matrix is a valid 𝑛𝑥𝑛 error covariance matrix   (5.3-4) 

 A valid 𝑛𝑥𝑛 error covariance matrix is a symmetric, 𝑛𝑥𝑛  positive definite matrix.   

In addition, from its top-level characterization/definition presented in Equation (5.3-4), we have the 

following properties for a valid 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋, where the properties are jointly labeled 

“Equation” (5.3-5) for convenience: 

 It is invertible (𝐶𝑋
−1 exists)          (5.3-5) 

 It has strictly positive diagonal entries (error variances) 

 It has a strictly positive determinant (det(𝐶𝑋) > 0) 

 The absolute value of the correlation coefficient for an arbitrary pair of distinct error 

components is less than 1 
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 It has 𝑛 (not necessarily distinct) strictly positive (>0) eigenvalues and corresponding 

eigenvectors 

 Its trace and determinant are the sum and product of its eigenvalues, respectively 

 An orthonormal 𝑛𝑥𝑛 (rotation) matrix Φ, consisting of the unit eigenvectors as matrix rows, 

maps the original coordinate system to the eigenvector-aligned coordinate system 

 The original error covariance matrix 𝐶𝑋 can be represented as an 𝑛𝑥𝑛 diagonal error covariance 

matrix 𝐷 with the eigenvalues as diagonals in the eigenvector-aligned  Cartesian coordinate 

system , i.e.,  𝐷 = Φ𝐶𝑋Φ𝑇 

In this document, unless specifically stated otherwise, an error covariance matrix 𝐶𝑋 is assumed valid.   

Eigenvalues and their corresponding eigenvectors are important characterizations of covariance matrices 

per Equation (5.3-5) and are referenced throughout this document.  More generally, the set of eigenvalues 

and eigenvectors corresponding to a square matrix is a fundamental concept in linear algebra and matrix 

analysis and is defined as follows:   

Eigenvalues and eigenvectors: 

Assume that 𝐴 is an arbitrary 𝑛 × 𝑛 matrix (not necessarily a covariance matrix).  If 𝜆 is a scalar and 𝑋 a 

non-zero 𝑛 × 1 column vector such that: 

𝜆 X = 𝐴𝑋,                                (5.3-6) 

then  𝜆 is called an eigenvalue of 𝐴 and 𝑋 is called an eigenvector of 𝐴 associated with 𝜆.    

The computation of eigenvalues/eigenvectors is based on solving Equation (5.3-6) for all 𝜆 and 

corresponding 𝑋.  This capability is readily available via function libraries associated with most 

programming languages, such as MATLAB. 

5.3.1 Formal derivation/definition of a valid error covariance matrix  

The actual formal definition of a valid error covariance matrix (as opposed to its properties or 

characteristics) follows from the definitions and interrelationships between a positive semi-definite 

matrix, a positive definite matrix, and the expected value operator as detailed in this section. 

From linear algebra, an arbitrary 𝑛𝑥𝑛 matrix 𝑄 is positive semi-definite by definition if the following scalar 

is always positive (non-negative): 

𝑍𝑇𝑄𝑍 = ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝑄𝑖𝑗 ≥ 0, for all 𝑛𝑥1 column vectors 𝑍.                (5.3.1-1) 

An 𝑛𝑥𝑛 matrix 𝑄 is positive definite by definition if the following scalar is always strictly positive: 

𝑍𝑇𝑄𝑍 = ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝑄𝑖𝑗 > 0,                    (5.3.1-2) 

for all 𝑛𝑥1 column vectors 𝑍 not identically equal to zero. 
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We now formally define a “valid” error covariance matrix as well as a “pseudo-valid” error covariance 

matrix based on the above definitions for positive definite and positive semi-definite matrices, 

respectively, and the underlying properties of random variables.  The formal definition also “justifies” the 

characterization/definition of a valid error covariance matrix presented earlier in Equation (5.3-4):  

Theoretical aspects 

An 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋 is guaranteed positive semi-definite by the linear properties of the 

expectation operator and the fact that the absolute value of an arbitrary quantity is always ≥ 0: 

𝐸{|𝑧1(𝜖𝑥1 − 𝜖𝑥̅̅ ̅1)+. . +𝑧𝑛(𝜖𝑥𝑛 − 𝜖𝑥̅̅ ̅𝑛)|2} =                  (5.3.1-3)  

∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝐸{(𝜖𝑥𝑖−𝜖𝑥𝑖̅̅ ̅̅ )(𝜖𝑥𝑗 − 𝜖𝑥𝑗̅̅ ̅̅ )} = 𝑍𝑇𝐶𝑋𝑍 ≥ 0, i.e., 𝐶𝑋 is positive semi-definite. 

However, we further add the stipulation that all (centered) random variables (𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖 ) are to be linearly 

independent, i.e., by the definition of linearly independent random variables  [27], page 190: 

𝐸{|𝑧1(𝜖𝑥1 − 𝜖𝑥̅̅ ̅1)+. . +𝑧𝑛(𝜖𝑥𝑛 − 𝜖𝑥̅̅ ̅𝑛)|2} > 0, for 𝑧𝑖, 𝑖 = 1, . . , 𝑛, not all zero;              (5.3.1-4)  

and thus, ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝐸{(𝜖𝑥𝑖−𝜖𝑥𝑖̅̅ ̅̅ )(𝜖𝑥𝑗 − 𝜖𝑥𝑗̅̅ ̅̅ )} = 𝑍𝑇𝐶𝑋𝑍 > 0, i.e., 𝐶𝑋 is positive definite.             (5.3.1-5) 

With this added (required) property of linearly independent random variable, the error covariance matrix 

𝐶𝑋 is positive definite and therefore invertible.   

Definitions 

Correspondingly, and per the above, a “valid” error covariance matrix is defined as an error covariance 

matrix that is a positive definite matrix.  A “pseudo-valid” error covariance matrix is defined as an error 

covariance matrix that is a positive semi-definite matrix but not a positive definite matrix. 

A valid error covariance matrix has all eigenvalues > 0 and is invertible.  A pseudo-valid error covariance 

matrix has all eigenvalues >= 0 with one or more equal to 0.  A pseudo-valid error covariance is not 

invertible. 

Caveats and additional implications regarding theory 

The linear independence of centered random variables (e.g., (𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖 )) is also equivalent to the linear 

independence of random variables (e.g., (𝜖𝑥𝑖)), since one is just the other plus a deterministic offset. 

Caution: we are referring to linearly independent random variables in this section, not to: 

 Independent random variables, which implies their pair-wise correlations are zero [27], page 189 

 Linearly independent deterministic quantities, such as “the rows of a matrix A are linearly 

independent” 
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Further note that linear independence between random variables does not imply that they are not 

correlated.  However, it does imply that they are not “totally” correlated.  This is demonstrated as follows.  

From Equation (5.3.1-4) and for 𝑧𝑖=1 and 𝑧𝑗 = ±1: 

 𝐸 {(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)
2 ± 2(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�) + (𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)

2
} =                 (5.3.1.6)  

𝜎𝑖
2 ± 2𝜎𝑖𝑗 + 𝜎𝑗

2 = 𝜎𝑖
2 ± 2𝜌𝑖𝑗𝜎𝑖𝜎𝑗 + 𝜎𝑗

2 > 0,      

which implies that 𝜌𝑖𝑗 < 1 if 𝑧𝑗 = −1, and −1 < 𝜌𝑖𝑗if 𝑧𝑗 = 1, or that: 

 |𝜌𝑖𝑗| < 1 ,                       (5.3.1.7) 

for an arbitrary pair of component errors.   

If the pair of component errors were totally correlated, |𝜌𝑖𝑗| would equal 1 which is not possible per 

Equation (5.3.1.7).   

Note that the above can also be generalized to demonstrate that an arbitrary error component (random 

variable) cannot be totally correlated with any linear combination of the other error components in a 

random error vector.  This includes the “deterministic” subcase where one error component cannot be 

an explicit linear combination of any of the other error components.  For example, 𝜖𝑋 ≠ [𝜖𝑥 𝜖𝑦 𝜖𝑞]𝑇, 

where 𝜖𝑞 = 2𝜖𝑥 − 𝜖𝑦.  Correspondingly, a Weighted Least Squares (WLS) solution for 𝑋 = [𝑥 𝑦]𝑇 with 

corresponding errors 𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇 is feasible (assuming that |𝜌𝑥𝑦| ≠ 1) but a WLS solution for 𝑋 =

[𝑥 𝑦 𝑞]𝑇 with corresponding errors 𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑞]𝑇 is not.  By feasible, we mean that the 

solution is solvable (well-defined) with a corresponding valid solution error covariance matrix.  (See TGD 

2d (Estimators and QC) for details of the corresponding WLS method.)   

To address the latter case, a WLS solution for  𝑋 = [𝑥 𝑦]𝑇 is performed first with corresponding solution 

2𝑥2 error covariance matrix 𝐶𝑋.  Following this, 𝑞 = 𝐵𝑇𝑋 with 1𝑥1 error covariance matrix 𝐶𝑞 = 𝐵𝑇𝐶𝑋𝐵 

is computed, where 𝐵 = [2 −1]𝑇.  The 1x1 covariance between 𝜖𝑞 and 𝜖𝑥 and the 1𝑥1 covariance 

between 𝜖𝑞 and 𝜖𝑦 can also be computed, if so desired.  However, if a corresponding 3𝑥3 error covariance 

matrix were subsequently assembled corresponding to all three error components of interest, it would be 

“pseudo-valid”, i.e., a positive semi-definite matrix, but not a positive-definite matrix, i.e., not invertible. 

Finally, Equation (5.3.1.7) is a necessary condition for a valid error covariance matrix, but not a sufficient 

condition, as will be demonstrated in Section 5.3.4. 

Summary 

Linear independence between random variables is a common assumption, i.e., random variables are 

selected/defined such that linear independence is true.  And when performed properly, the corresponding 

error covariance matrix is a “valid” error covariance matrix with the existence of 𝐶𝑋
−1 guaranteed.  The 

latter is required for many related definitions and practical applications, such as: (1) the definition of the 

multi-variate Gaussian pdf, (2) the computation of the error ellipsoid (Section 5.4), (3) the computation of 
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the scalar accuracy metrics LE, CE, and SE (Section 5.5), and (4) the implementation of WLS solutions.  The 

“bottom-line”: a valid error covariance matrix is assumed throughout this document unless explicitly 

stated otherwise.  

5.3.2 Additional properties of the error covariance and related matrices 

The properties listed in Equation (5.3-5) for valid error covariance matrices are straightforward, easily 

stated, and very useful.  Another property for valid error covariance matrices that is not quite as 

“straightforward”, but certainly useful, particularly regarding the propagation of error covariance 

matrices (Section 5.7), is as follows: 

 Any “new” 𝑚𝑥1 random error vector defined as 𝜖𝑋′ = Ω 𝜖𝑋, and thus 𝜖𝑋′̅̅ ̅̅̅ = Ω 𝜖𝑋̅̅̅̅  ,     (5.3.2-1) 

where the 𝑚𝑥𝑛 mapping matrix Ω is full rank, has a valid 𝑚𝑥𝑚 error covariance  

matrix equal to 𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′ − 𝜖𝑋′̅̅ ̅̅̅)(𝜖𝑋′ − 𝜖𝑋′̅̅ ̅̅̅ )𝑇) = Ω𝐶𝑋Ω𝑇.   

o If the mapping matrix is not full rank (e.g., 𝑚 > 𝑛), the resultant error covariance matrix 

is “pseudo-valid” but not “valid”, and hence, is not invertible. 

Additional properties of valid error covariance and related matrices are: 

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix, its 𝑛𝑥𝑛 inverse 𝐴−1                          (5.3.2-2)     

is also a valid error covariance matrix since it is symmetric and positive definite  

as well.  In addition, its eigenvalues are the reciprocal of the eigenvalues of 𝐴.  

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix and the 𝑛𝑥𝑛 matrix 𝐵             (5.3.2-3)  

is a pseudo-valid (or valid) error covariance matrix, then the matrix 𝐴 + 𝐵 

is a valid error covariance matrix.  

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix and 𝑌 an arbitrary 𝑛𝑥1                     (5.3.2-4) 

vector, the 𝑛𝑥𝑛 matrix 𝐴′ = 𝐴 + 𝑌𝑌𝑇 is a valid 𝑛𝑥𝑛 error covariance matrix,  

based on Equation (5.3.2-3) and the following: 

o 𝑌𝑌𝑇 is symmetric and positive semi-definite, since it is obviously symmetric and for an 

arbitrary 𝑛𝑥1 vector 𝑍, 𝑍𝑇𝑌 is a scalar 𝑠, and 𝑍𝑇𝑌𝑌𝑇𝑍 equals 𝑠2 ≥ 0; hence, 𝑌𝑌𝑇 is 

positive semi-definite by definition and either pseudo-valid or valid. 

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix, the 𝑛𝑥𝑛 matrix 𝐵 = 𝑘𝐴                   (5.3.2-5)   

is also a valid error covariance matrix, where the scalar 𝑘 > 0 and the  

multiplication 𝑘𝐴 corresponds to multiplying each element of 𝐴 by the scalar 𝑘. 

Further, note that virtually all commercial pseudo-code (e.g., MATLAB) have straight-forward functions to 

determine eigenvalues and corresponding eigenvectors, as well as other functions from linear algebra and 

probability/statistics.   The linear algebra related properties/proofs of Sections 5.3, 5.3.1, and 5.3.2 are 

found or can be readily derived via reference [23]. 

5.3.3 Possible issues with the mean-value 

In Section 5.2, we defined the 𝑛𝑥1 mean-value 𝜖𝑋̅̅̅̅  and the 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋 about the 

mean-value.  Since, in this document, these are predictive statistics, the mean-value is typically assumed 

zero and need not be accounted for explicitly.  Also, if it were non-zero, in many instances the 

corresponding vector 𝑋 could be corrected “ahead of time”, such as for a known satellite metadata error 
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(“bias”) corrected for during preprocessing at a ground (collection) station.  That is 𝑋 → 𝑋 − 𝜖𝑋̅̅̅̅  at the 

ground station, and therefore, the mean-value of error 𝜖𝑋̅̅̅̅  is subsequently zero thereafter. 

In summary, typically for predictive statistics within the NSG, either: (1) 𝜖𝑋̅̅̅̅  with a value of zero and 𝐶𝑋 

are both accounted for/disseminated explicitly, or (2) only 𝐶𝑋 is accounted for/disseminated explicitly, 

with 𝜖𝑋̅̅̅̅  assumed zero.   

However, if this is not the case (𝜖𝑋̅̅̅̅ ≠ 0 disseminated explicitly with 𝐶𝑋), the equations in this document 

can be utilized by various modules/applications as they account (sometimes as an option) for a non-zero 

mean-value.  If this is not possible due to design limitations (i.e., a non-zero mean-value of random error 

cannot be disseminated/implemented by various modules/applications), this problem can be mitigated 

by inflating the error covariance matrix before dissemination/implementation as follows: 

{ 𝜖𝑋̅̅̅̅ ≠ 0 and 𝐶𝑋 } → { 𝜖𝑋̅̅̅̅  assumed zero and the original 𝐶𝑋 modified to  (𝐶𝑋 + 𝜖𝑋̅̅̅̅  𝜖𝑋̅̅̅̅ 𝑇) }             (5.3.3-1) 

The original (left side of the above equation) is statistically correct, and the right side an approximation to 

be used only if necessary, i.e., this technique is a “last resort” to account for a non-trivial mean-value 

when confronted with design limitations.  We know, by Equations (5.3.2-3) and (5.3.2-4), that the 

approximation corresponds to a valid error covariance matrix (symmetric and positive definite).  The form 

of the approximation follows from Equation (5.3.2-4). 

In the upcoming Section 5.4 on error ellipsoids, Figure 5.4.1-5 presents an example of Equation (5.3.3-1) 

in terms of corresponding error ellipsoids. 

5.3.4 Assurance of valid and realistic error covariance matrices required for practical 

applications 

A candidate error covariance matrix is either valid (positive definite), pseudo-valid (positive semi-definite), 

or invalid (not positive semi-definite).   

In general, a positive definite matrix is also a positive semi-definite matrix by definition, but a positive 

semi-definite matrix is not necessarily a positive definite matrix.  Thus, per our definitions (Section 5.3.1), 

a valid error covariance matrix is also a positive semi-definite matrix, but a pseudo-valid error covariance 

matrix is not a positive definite matrix.  And as such, a pseudo-valid error covariance matrix is not 

invertible, a property required for many applications, such as weighting measurements in an estimator.  

On the other hand, a valid error covariance matrix is invertible, as desired. 

A candidate error covariance matrix is invalid if it has one or more negative eigenvalues.  As such, there is 

some linear combination of its underlying error components that has a negative variance – physically 

impossible, and a “time-bomb” for any application attempting to use it. 

Thus, it certainly made sense to define a valid error covariance matrix as a symmetric and positive definite 

matrix.  And hopefully, it is easy to identify a “valid” versus “pseudo-valid” versus “invalid” error 

covariance matrix.  Figure 5.3.4-1 presents the simplest possible case for all three categories. 
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Figure 5.3.4-1: Valid, pseudo-valid, and invalid error covariance matrices, including their eigenvalues  

Of course, with more realistic applications, it is not so easy to identify validity without computing 

corresponding eigenvalues as they are not obvious.  For example, the 3x3 error covariance matrix on the 

left side of Figure 5.3.4-2 is valid, while the one on the right side is invalid.  The latter’s correlation 

coefficients are statistically inconsistent with each other.  The first component of error is highly correlated 

(statistically similar; correlation coefficient equal to 0.9) with the second, and the second component of 

error is highly correlated with the third.  This would imply that the first and third components must be 

reasonably correlated as well ( > 0.62 ), but they are not.  Hence, the error covariance matrix is invalid, 

i.e., it has a negative eigenvalue.  This is true even though the necessary condition that the absolute values 

of all correlations were less than 1 was met.  (Only for a 2𝑥2 error covariance matrix is this condition 

sufficient, assuming of course, diagonal elements are greater than zero.) 

 

Figure 5.3.4-2: Valid and invalid error covariance matrices, including corresponding eigenvalues 

(duplicate of Figure 4-3) 

The above example (Figure 5.3.4-2) was also more typical than the first example (Figure 5.3.4-1) in that 

most error covariance matrices of interest are larger than 2𝑥2 matrices (3𝑥3 to 10000𝑥10000 not 

 

 

  = [
  .  . 
.   . 
. .  

] 

eig = 2.7, 0.3, 0.03 

Invalid Valid 

  = [
  .  . 
.   . 
. .  

] 

eig = 2.4,0.7,-0.1 
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unrealistic), and are usually non-diagonal, particular if an output from an estimator (e.g., Kalman Filter or 

WLS).  The off-diagonal components (correlations) are extremely important for the characterization of 

predicted accuracies as well as optimal performance of subsequent processing – they are not to be 

ignored or simply removed.  Methods for the generation, dissemination, and representation of error 

covariance matrices presented in this document insure valid and full error covariance matrices. 

Correspondingly, although it is important to recognize a pseudo-valid or invalid covariance matrix when 

they do occur, our goal is their infrequent occurrence for applications of interest.  When they do occur, 

they are typically associated with the implementation of an incorrect a priori error model and/or the 

divergence of an estimator.  (An exception corresponds to the generation of a pseudo-valid error 

covariance matrix associated with the comparison of valid error covariance matrices – see Section 5.4.6.) 

Realistic error covariance matrices 

Finally, although we consider a valid error covariance matrix as a necessary condition, we also want a 

“realistic” error covariance matrix – one that reasonably approximates the “true” and generally unknown 

error covariance matrix that corresponds to the true error.  This, of course, is a challenge.  Throughout 

this document we present various methods to reasonably model errors and to assemble corresponding 

error covariance matrices.  Of course, modeling is “user-specific” and usually iterative, in that 

corresponding predictive statistics need verification with sample statistics/“ground truth”, and the 

predictive error model subsequently “tuned”.  QC checks in various estimators that rely on predictive 

statistics can also be employed.  These topics are covered more deeply in TGD 1 (Overview and 

Methodologies), TGD 2d (Estimators and Quality Control), TGD 2c (Specification and Validation), and TGD 

2f (External Data and Quality Assessment). 

5.4 Error Ellipsoids 
This section of the document assumes that the underlying probability distribution of errors is Gaussian in 

order to assign probabilities to the error ellipsoids.  In general, a Gaussian distribution of errors is both a 

typical assumption and a reasonable assumption unless a significantly different distribution of errors is 

known to be applicable. 

An error ellipsoid is a graphical representation of the error covariance CX and an intuitive representation 

of predicted accuracy.  It displays, among other things, the directions of greatest and least expected error 

(magnitude).   It is typically defined for three or fewer components of error for visualization.  All error 

covariance matrices are assumed valid (positive definite) in this section and in following sections unless 

specifically noted otherwise. 

The error ellipsoid presented in Figure 5.4-1 corresponds to geographic 3d location error as represented 

in a local tangent plane (ENU) Cartesian coordinate system.  It was computed as a 90% (0.9p) error 

ellipsoid, which means that there is a 90% probability that a location (solution) error is within the ellipsoid.  

Alternatively, if the 90% error ellipsoid is centered at the target solution 𝑋 instead of zero, there is a 90% 

probability that the true target location is within the ellipsoid.  When centered at the target solution, the 

error ellipsoid is typically called a confidence ellipsoid.  We are 90% confident that the true target location 

is within the 90% confidence ellipsoid. 
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Figure 5.4-1: The 90% (0.9p) probability error ellipsoid corresponding and equivalent to 𝐶𝑋 (duplicate of 

Figure 4-4) 

The specific underlying error covariance matrix in the above example is equal to: 

𝐶𝑋 = [

𝜎𝑥
2 𝜌𝑥𝑦𝜎𝑥𝜎𝑦 𝜌𝑥𝑧𝜎𝑥𝜎𝑧

. 𝜎𝑦
2 𝜌𝑦𝑧𝜎𝑦𝜎𝑧

. . 𝜎𝑧
2

] = [
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9
. 122 0.8 ∙ 12 ∙ 9
. . 92

].   (5.4-1) 

(Note: the above is an error covariance matrix relative to a 3𝑥1 state vector error 𝜖𝑋 =

[𝜖𝑥1 𝜖𝑥2 𝜖𝑥3]𝑇 ≡ [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇.) 

The general equation for an error ellipsoid (boundary) is: 

𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2,           (5.4-2) 

where 𝜖𝑋 is 𝑛𝑥1, 𝐶𝑋 is 𝑛𝑥𝑛, 𝑛 an integer and typically 1 ≤ 𝑛 ≤ 3, 𝑑 a positive scalar, and the mean-value 

𝜖𝑋̅̅̅̅  (error ellipsoid origin) is assumed equal to 0. 

Figure 5.4-2 presents a corresponding summary of the general equation for different values of 𝑛. 
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Figure 5.4-2: General Equation for the Error Ellipsoid 

This general equation is both simple yet elegant.  However, the key to its use and interpretation is the 

value of the “distance” or normalized radius 𝑑 (unitless) 

Assuming a Gaussian (multi-variate) probability distribution of errors (i.e., the normal or “bell-shaped” 

distribution of errors), various values of the normalized radius d correspond to various probabilities that 

the n-dimensional solution error lies within the interior of the error ellipsoid.  Tables 5.4-1 and 5.4-2 

present the correspondence between probability p and distance or normalized radius d, and dimension 

n.  Note: when n = 2 and n = 1, the ellipsoid “collapses” to an ellipse and line, respectively. 

Table 5.4-1 Distance or normalized radius d versus probability p and dimension n 

 
 

Table 5.4-2 Probability p versus distance or normalized radius d and dimension n 

 
 

Therefore, for example, the 90% error ellipsoid (𝑛 = 3) presented in Figure 5.4-1 corresponds to the 

equation 𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = (2.5003)2 per Table 5.4-1. 

The entries for the above tables were derived via the equations detailed in Section 5.4.2. 

Applicable to higher dimensions 

                            The general equation for an error ellipsoid is given by:  𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2 

For dim 𝑛 = 1:                        For dim 𝑛 = 2:                             For dim 𝑛 = 3:  

𝜖𝑋 = 𝜖𝑥                                  𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇                       𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇  

         𝐶𝑋 = [𝐸{𝜖𝑥2}]        𝐶𝑋 = [
𝐸{𝜖𝑥2} 𝐸{𝜖𝑥𝜖𝑦}

. 𝐸{𝜖𝑦2}
]            𝐶𝑋 = [

𝐸{𝜖𝑥2} 𝐸{𝜖𝑥𝜖𝑦} 𝐸{𝜖𝑥𝜖𝑧}

. 𝐸{𝜖𝑦2} 𝐸{𝜖𝑦𝜖𝑧}

. . 𝐸{𝜖𝑧2}

] 

probability p n=1 n=2 n=3

0.5 0.6745 1.1774 1.5382

0.9 1.6449 2.1460 2.5003

0.95 1.9600 2.4477 2.7955

0.99 2.5758 3.0349 3.3682

0.999 3.2905 3.7169 4.0336

distance d n=1 n=2 n=3

1 0.6827 0.3935 0.1987

2 0.9545 0.8647 0.7385

3 0.9973 0.9889 0.9707
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The above error ellipsoids correspond to a dimension 1 ≤ 𝑛 ≤ 3 and are applicable to the majority of 

Geopositioning applications. This range of dimensions is also practical regarding the rendering (drawing) 

of the error ellipsoids and for the computation of the values of 𝑑 versus probability or confidence-level 𝑝 

presented in Tables 5.4-1 and 5.4-2.  However, all applications in the following sub-sections of Section 5.4 

are equally applicable to higher dimensional ellipsoids (𝑛 > 3) and corresponding error covariance 

matrices, unless specifically stated otherwise.  Basically, the only restriction corresponds to rendering an 

error ellipsoid that corresponds to a dimension 𝑛 > 3.  Correspondingly, all examples that follow and 

involve the drawing of one or more error ellipsoids correspond to  𝑛 ≤ 3. 

5.4.1 Error Ellipsoid Examples 

Let 𝑛 = 2, and 𝐶𝑋 = [
4 2
2 3

] meters-squared.  The error ellipsoid is an ellipse whose boundary is specified 

by   𝜖𝑋𝐶𝑋
−1𝜖𝑋𝑇 = 𝑑2 or more specifically, since  𝜖𝑋𝑇 = [𝜖𝑥 𝜖𝑦] and 𝐶𝑋

−1 = [
3/8 −1/4

−1/4 1/2
]: 

(3/8)𝜖𝑥2 − 2(1/4)𝜖𝑥𝜖𝑦 + (1/2)𝜖𝑦2 = 𝑑2.                  (5.4.1-1) 

This is an equation for an ellipse and guaranteed valid since  𝐶𝑋 is positive definite, and thus 𝐶𝑋 is invertible 

and 𝑑𝑒𝑡(𝐶𝑋
−1) > 0. 

Figure 5.4.1-1 plots the error ellipse corresponding to 𝑑 = 1, which is often referred to as the standard 

error ellipse and has a probability level of only 𝑝 = 0.3935  per Table 5.4-2.  Figure 5.4.1-2 plots the error 

ellipse corresponding to 𝑑 = 1.1774, with a probability level 𝑝 = 0.50  per Table 5.4-1.   It is slightly larger 

than the standard ellipse. 

 

Figure 5.4.1-1: Error Ellipse (red) with d=1 and p=0.39 (often called standard error ellipse) 
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Figure 5.4.1-2: Error Ellipse (red) with d=1.1774 and p=0.50 

The magnitude and direction of the semi-major axis of the first ellipse corresponds to the square root of 

the maximum eigenvalue and its (unit) eigenvector from the error covariance matrix 𝐶𝑋, respectively.  

Similarly, the semi-minor axis corresponds to the square root of the minimum eigenvalue and its (unit) 

eigenvector.  These are shown as the magenta lines (vectors) in the plot.   

If 𝑑 ≠ 1 (second ellipse), only the directions of its semi-major and semi-minor axes match those in the 

first ellipse (𝑑 = 1), not their magnitudes.  In general, the magnitude of the semi-major and minor-axis 

equal 𝑑√𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥  and 𝑑√𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛, respectively. 

The above plots implemented Equation (5.4.1-1), expressing 𝜖𝑦 as a function of 𝜖𝑥 using the quadratic 

formula: 

𝜖𝑦 = (𝜖𝑥 ± √−2𝜖𝑥2 + 8𝑑2)/2, 𝜖𝑥 = −2,… ,2, where                   (5.4.1-2) 

the end points in the range for 𝜖𝑥 correspond to a value of zero under the square-root, i.e., a single value 

for  𝜖𝑦.   

The above error ellipses can also be rendered “more naturally” using an eigenvector aligned coordinate 

system followed by a rotation back to the original Cartesian coordinate system – see Section 5.4.4. 

We now present additional 3𝑑 error ellipsoids (𝑛 = 3) corresponding to the specific (symmetric) 3𝑥3 error 

covariance presented in Equation (5.4-1). The error ellipsoids presented in Figure 5.4.1-3 correspond to 

this error covariance but to two different probability levels – 90% and 50%.  The 90% error ellipsoid on 
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the left is significantly larger (more volume) than the 50% error ellipsoid on the right, but has the same 

shape.  Note that with both ellipsoids, we can “see” how uncertainty varies with direction. 

   

Figure 5.4.1-3: 90% (left) and 50% (right) error ellipsoids 

 

Figure 5.4.1-4 illustrates the significance of (intra-state vector) correlation (  ) between the various 

components.  The left side of the figure presents the 90% and 50% error ellipsoids again but places them 

side by side for ease of comparison.  The right side of the figure presents the same error ellipsoids but 

with the off-diagonal elements of the covariance matrix mistakenly ignored, i.e.,  = 0 for the various 

cross-components.  Note the incorrect shape of the error ellipsoids generated without correlations and 

how this leads to significant misunderstanding of which points may be within the 90% (or 50%) error 

ellipsoid. 
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Figure 5.4.1-4:  90% and 50% error ellipsoids generated with (left) and without (right) correlations 

 

Finally, as a reminder, we have assumed that the error 𝜖𝑋 has a mean-value of zero, as typically the case.  

If not, simply modify Equation (5.4-2) for the error ellipsoid from 𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 to: 

 (𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇𝐶𝑋
−1(𝜖𝑋 − 𝜖𝑋̅̅̅̅ ),                    (5.4.1-3) 

where 𝜖𝑋̅̅̅̅  is the mean-value. 

For example, Figure 5.4.1-5 plots three 0.9p ellipses.  The first two ellipses have the same error covariance 

matrix about the mean-value, but the first (red) has a mean-value of zero and the second (blue) has a non-

zero mean-value which becomes the ellipse origin.  The corresponding predictive statistics for these 

ellipses are: 

(1) 𝜖𝑋̅̅̅̅ = 0, 𝐶𝑋 = [
2 1
1 1

],  (2) 𝜖𝑋̅̅̅̅ = [0.1 2]𝑇, 𝐶𝑋 = [
2 1
1 1

].               (5.4.1-4) 

It is important to note that, even though the second (blue) ellipse is offset from the corresponding (red) 

ellipse due to a non-zero mean-value, it is still 90% probable that a corresponding error will reside within 

the (blue) ellipse itself. 
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Figure 5.4.1-5: Three related error ellipses: blue differs from red due to a non-zero mean-value of error 

(blue ellipse origin); teal corresponds to a “mean-value zero approximation” of blue; semi-major and 

semi-minor axis included with each ellipse 

The third ellipse (teal) corresponds to a “mean-value zero” approximation of the second’s predictive 

statistics (see Section 5.3.3): 

(3) 𝜖𝑋̅̅̅̅ = 0, 𝐶𝑋 = [
2 1
1 1

] + [
0.1
2

] [0.1 2]                 (5.4.1-5) 

It is 90% probable that a corresponding error will reside within the (teal) ellipse, which is necessarily larger 

than the (blue) ellipse to enclose the same 90% probability. 

5.4.2 Derivation of relationship between probability p & ellipsoidal distance d 

 
The following details how the values in Table 5.4-1 and Table 5.4-2 were generated, and therefore, how 

to generate additional entries corresponding to different probability levels, if so desired.   

 

Let us assume that 𝑋 and 𝐶𝑋 correspond to a multivariate mean-zero Gaussian random variable (and 

dropping the explicit error notation 𝜖𝑋 for convenience).  We will determine the probability that the multi-

variate random variable resides within the ellipsoidal boundary in 𝑅𝑛 defined by the quadratic form 

𝑋𝑇𝐶𝑋
−1𝑋 = 𝑑2,  where 𝑛 = 1, 2, or 3, and the ellipsoidal distance or normalized radius 𝑑 is specifiable.  In 

general, the probability equals: 

 

𝑝 =
1

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∭ 𝑒−1/2(𝑋𝑇𝐶𝑋
−1𝑋)  𝑑𝑥1. . 𝑑𝑥𝑛

∗

𝑋𝑇𝐶𝑋
−1𝑋≤𝑑2  ,                                                                (5.4.2-1)  
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where the notation above, i.e., ∭ (…)𝑑𝑥1. . 𝑑𝑥𝑛
∗

𝑋𝑇𝐶𝑋
−1𝑋≤𝑑2 , in particular, specifies integration over the 

region 𝑋𝑇𝐶𝑋
−1𝑋 ≤ 𝑑2 in 𝑅𝑛. 

 

Let us now evaluate the above for the explicit cases 𝑛 = 1, 2, and 3, and assume that 𝑋 and 𝐶𝑋 correspond 

to representation by an eigenvector basis and eigenvalues (𝜆) for simplicity (the above formula is 

applicable to either representation), i.e.,  

 

𝐸{𝑋𝑋𝑇} = 𝐶𝑋 = [
𝜆1 0 0
0 . . 0
0 0 𝜆𝑛

], and 𝜆1 = 𝜎𝑥
2, 𝜆2 = 𝜎𝑦

2, 𝜆3 = 𝜎𝑧
2. 

n=1: 

 

𝑝 =
1

√2𝜋𝜎𝑥
∫ 𝑒−1/2(𝑥2/𝜎𝑥

2)∗

(
𝑥2

𝜎𝑥
2)≤𝑑2

𝑑𝑥 =
1

√2𝜋
∫ 𝑒−1/2(𝑥2)𝑑𝑥

∗

𝑥2≤𝑑2 =
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
𝑑/√2

0
≡ erf (𝑑/√2),  (5.4.2-2) 

 

where the above series of integrals are equivalent and reflect change of variables.   

 

The integral “erf” is called the “error function”, a well-known function that has no closed form solution, 

but whose values are tabulated in great detail in many books, can be approximated by numerical 

integration, and is available in most pseudo-code (e.g., MATLAB) as a function call.  Its inverse “erfinv” is 

also available in most pseudo-code as a function call. 

 

Thus, given the desired value 𝑑, the corresponding 𝑝 = erf (
𝑑

√2
) ;                (5.4.2-3) 

or given the desired value  𝑝, the corresponding 𝑑 = √2 𝑒𝑟𝑓𝑖𝑛𝑣(𝑝). 

 

n=2: 

𝑝 =
1

2𝜋𝜎𝑥𝜎𝑦
∬ 𝑒

−1/2(
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2)

𝑑𝑥𝑑𝑦
∗
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2≤𝑑2

=
1

2𝜋
∬ 𝑒−1/2(𝑥2+𝑦2)𝑑𝑥𝑑𝑦

∗

𝑥2+𝑦2≤𝑑2               (5.4.2-4) 

Switching to polar coordinates, 𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 𝑦 = sin(𝜃) , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃, we have: 

𝑝 =
1

2𝜋
∫ ∫ 𝑒−1/2(𝑟2)𝑑

0

2𝜋

0
𝑟𝑑𝑟𝑑𝜃 =

1

2𝜋
∫ (−𝑒−

𝑑2

2 + 𝑒02𝜋

0
)𝑑𝜃 = (1 − 𝑒−

𝑑2

2 ).               (5.4.2-5) 

Thus, given the desired value 𝑑, the corresponding 𝑝 = (1 − 𝑒−
𝑑2

2 ) ;                (5.4.2-6) 

or given the desired value  𝑝, the corresponding 𝑑 = √−2  𝑙𝑜𝑔𝑒(1 − 𝑝). 

 

n=3: 
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𝑝 =
1

(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧
∭ 𝑒

−1/2(
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2+

𝑧2

𝜎𝑧
2 )

𝑑𝑥𝑑𝑦𝑑𝑧
∗
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2+

𝑧2

𝜎𝑧
2 ≤𝑑2

=               (5.4.2-7) 

1

(2𝜋)3/2 ∭ 𝑒−1/2( 𝑥2+𝑦2+ 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧
∗

𝑥2+𝑦2+ 𝑧2 ≤𝑑2 . 

Switching to spherical coordinates, 

 𝑥 = 𝑟𝑠𝑖𝑛(𝜙) cos(𝜃) , 𝑦 = 𝑟𝑠𝑖𝑛(𝜙) sin(𝜃) , 𝑧 = 𝑟𝑐𝑜𝑠(𝜃), 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑟2 sin(𝜙) 𝑑𝑟𝑑𝜙𝑑𝜃, we have: 

𝑝 =
1

(2𝜋)3/2 ∫ ∫ ∫ 𝑒−1/2(𝑟2)𝑟2 sin(𝜙) 𝑑𝑟𝑑𝜙𝑑θ
𝑑

0

𝜋

0

2𝜋

0
.                 (5.4.2-8) 

Now we can integrate ∫ 𝑒−1/2(𝑟2)𝑟2𝑑𝑟
𝑑

0
= 23/2 ∫ 𝑒−𝑟2𝑑/√2

0
𝑟2𝑑𝑟 by parts to get: 

√
𝜋

2
erf (

𝑑

√2
) − 𝑑 𝑒−𝑑2/2.                     (5.4.2-9) 

(For integration of the integral ∫ 𝑒−𝑟2𝑑/√2

0
𝑟2𝑑𝑟 by parts, represent it as ∫ 𝑢𝑑𝑣

𝑏

𝑎
, where 𝑢 = 𝑟, 𝑑𝑣 =

𝑒−𝑟2
𝑟𝑑𝑟, 𝑎 = 0, 𝑏 = 𝑑/√2.) 

Thus, 𝑝 =
1

(2𝜋)3/2 (√
𝜋

2
erf(𝑑/√2) − 𝑑 𝑒−

𝑑2

2 )∫ ∫ sin(𝜙) 𝑑𝜙𝑑𝜃
𝜋

0

2𝜋

0
, or 

𝑝 = erf(𝑑/√2) − √2/𝜋 𝑑 (𝑒−𝑑2/2).                (5.4.2-10) 

Thus, given the desired value 𝑑, the corresponding 𝑝 equals the direct evaluation of           (5.4.2-11) 

Equation (5.4.2-10); or given the desired value 𝑝, the corresponding 𝑑 equals the results of an iterative 

search for 𝑑 such that Equation (5.4.2-10) is satisfied to within a small tolerance dictated by desired 

precision. 

 

5.4.3 Additional properties of the Error Ellipsoid 

 
Referring back to Equations (5.4-2) and (5.4.2-1), the surface of the error ellipsoid corresponds to a 

constant probability density equal to (2𝜋)−𝑛/2det (𝐶𝑋)−1/2𝑒−1/2(𝑑2).  In addition, the 3d error ellipsoid 

requires the least volume over all surfaces to capture the specified level of probability it encloses.  

Similarly, the 2d error ellipse requires the least area over all curves, i.e., it is the “optimal shape”, given 

that the probability distribution is Gaussian.  This can be proven using the Calculus of variations [32]. 

Regarding the volume (area) of an error ellipsoid defined by 𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2: 

𝑛 = 2  𝐴𝑟𝑒𝑎 = 𝑠𝑞𝑟𝑡(det(𝐶𝑋))𝜋𝑑2   (2d ellipse)                             (5.4.3-1) 

𝑛 = 3   𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑠𝑞𝑟𝑡(det(𝐶𝑋))(4/3)𝜋𝑑3  (3d ellipsoid)               (5.4.3-2) 

Note that det(𝐶𝑋) equals the product of the eigenvalues of the error covariance matrix 𝐶𝑋. 
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Finally, the error ellipsoid can correspond to either absolute error, as represented by the 3𝑥3 error 

covariance matrix 𝐶𝑋, or relative error, as represented by the 3𝑥3 relative error covariance matrix 𝑟𝑒𝑙𝐶𝑋 

(see Section 5.6.4).  Once the appropriate error covariance matrix is available, all procedures and 

interpretations involving the error ellipsoid are the same, other than whether absolute or a relative error 

is represented. 

5.4.4 Rendering the Error Ellipsoid 

The error ellipsoid is based on Equation (5.4-2) and relative to an original Cartesian coordinate system 

(x,y,z).  However the same error ellipsoid can be represented in a more straightforward manner in an 

eigenvector aligned Cartesian coordinate system (x’,y’,z’), where the eigenvectors and their eigenvalues 

correspond to the original error covariance matrix 𝐶𝑋.  This is illustrated as follows for an error ellipse 

(𝑛 = 2) for convenience, although easily extendable to an error ellipsoid (𝑛 = 3) in a straightforward 

manner.   

Because we assume a valid 2𝑥2 error covariance matrix 𝐶𝑋, i.e., symmetric and positive definite, there 

exists a 2𝑥2 unitary matrix Φ that transforms vectors from the (x,y) system to the (x’,y’) system.  The 

matrix rows of Φ consist of the unit eigenvectors of 𝐶𝑋, and Φ𝐶𝑋Φ𝑇 = 𝐷, where 𝐷 is a diagonal 2𝑥2 

matrix with corresponding eigenvalues as the diagonal elements (maximum eigenvalue assumed in the 

x’-direction for specificity).  In addition, since Φ is unitary, Φ𝑇 = Φ−1.  Thus: 

𝐷−1 = (Φ𝐶𝑋Φ𝑇)−1 = Φ𝑇−1𝐶𝑋
−1Φ−1 = Φ𝐶𝑋

−1Φ𝑇.                 (5.4.4-1) 

𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2                     (5.4.4-2) 

𝜖𝑋𝑇(Φ𝑇Φ)𝐶𝑋
−1(Φ𝑇Φ)ϵ𝑋 = 𝑑2 

(Φϵ𝑋)𝑇(Φ𝐶𝑋
−1Φ𝑇)(Φϵ𝑋) = 𝑑2 

𝜖𝑋′𝑇𝐷−1ϵX′ = 𝑑2 

𝜖𝑥′2

𝜎𝑒𝑖𝑔𝑚𝑎𝑥
2 +

𝜖𝑦′2

𝜎𝑒𝑖𝑔𝑚𝑖𝑛
2 = 𝑑2. 

This is illustrated in Figure 5.4.4-1.  Note that, as directly implied by Equation (5.4.4-2), the error ellipse 

semi-major and semi-minor axis correspond to 𝑑 multiplied by the square-root of the eigenvalues, i.e., 

𝑑𝜎𝑒𝑖𝑔𝑚𝑎𝑥 and 𝑑𝜎𝑒𝑖𝑔𝑚𝑖𝑛, respectively. 
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Figure 5.4.4-1: The error ellipse in the eigenvector-aligned coordinate system  

See Appendix B for pseudo-code (MATLAB) to render a 2d error ellipse and a 3d error ellipsoid in the 

original Cartesian coordinate system.  The approach is to generate the ellipsoid relative to an eigenvector-

aligned coordinate system, and then rotate to the original coordinate system and render (draw).  Inputs 

consist of the error covariance matrix, an optional mean-value, and either the desired probability p or 

ellipsoidal distance or normalized radius 𝑑. 

Finally, an error ellipsoid and corresponding error covariance matrix are equivalent: given the desired 

probability level, one can be derived solely from the other.  Specifically, corresponding to a desired 

dimension 𝑛 and a desired level of probability (and hence, value of d) the error ellipsoid is based solely on 

the 𝑛𝑥𝑛 error covariance matrix (inverse) in its defining formula (Figure 5.4-2), and although seldom 

performed in practice, the 𝑛𝑥𝑛 error covariance matrix can also be derived via a graph of the error 

ellipsoid corresponding to dimension 𝑛 and desired level of probability (and hence, value of d).  This is 

most easily implemented by “reverse engineering” the above ellipsoid rendering procedure, i.e., 

determine the alignment and length of the error ellipsoid’s principal axes (e.g., semi-major and semi-

minor axes), which correspond to the eigenvectors and eigenvalues (scaled by the value d) of the error 

covariance matrix and which completely define it via the corresponding unitary transformation (matrix 

𝜙) described earlier in this subsection. 

5.4.5 Directed percentiles 

Sometimes we are interested in the probability of errors in a specific direction in addition to the 

probability of errors interior to an error ellipsoid.  That is, if errors 𝜖𝑋 are 𝑛𝑥1, we are interested in the 

probability of error along a specified direction.  More specifically, we are interested in the 1d errors 

corresponding to the 𝑛𝑥1 errors projected along or onto the specified direction.   

As a simple example, suppose that: (1) a GPS-equipped helicopter is to land at a location 𝑋 with a 

corresponding predicted error covariance matrix 𝐶𝑋, (2) visibility is poor, and (3) the landing site is along 
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a road oriented North-East with buildings very close on either side, i.e., in the North-West direction.  The 

probability of the error 𝜖𝑋 in the North-West direction is of paramount importance.  Also, in general, the 

direction of interest need not be in the horizontal plane per se; for example, it might be in a horizontal 

plane subsequently tilted away from vertical. 

The directed percentile 

Assume that the 𝑛𝑥1 error 𝜖𝑋 has a mean-value of zero and an 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋.  Let us 

designate the direction of interest as that associated with an 𝑛𝑥1 unit vector 𝜂 represented in the same 

coordinate system as the error, typically a local tangent plane coordinate system.   

Next, in support of our primary goal, we determine the 1𝑥1 error covariance matrix of the 1𝑑 errors 𝜖𝑞 

that are defined as the 𝑛𝑥1 errors projected onto the 𝑛𝑥1 direction (unit vector) 𝜂, i.e., as 𝜖𝑞 ≡ 𝜂 ∙ 𝜖𝑋 =

𝜂𝑇𝜖𝑋: 

𝐶𝜖𝑞 ≡ 𝐸{𝜖𝑞2} = 𝐸{(𝜂𝑇𝜖𝑋)(𝜂𝑇𝜖𝑋)𝑇} = 𝜂𝑇𝐸{𝜖𝑋𝜖𝑋𝑇}𝜂 = 𝜂𝑇𝐶𝑋𝜂 .                                                        (5.4.5-1) 

Note that the unit vector 𝜂 has a magnitude that is equal to 1 by definition.  Also, 𝜖𝑞 = ∑ 𝜂(𝑖)𝑛
𝑖=1 𝜖𝑋(𝑖), 

where the index 𝑖 corresponds to vector component.  Thus, 𝜖𝑞 is a Gaussian distributed random variable 

since it is the linear combination of Gaussian distributed random variables 𝜖𝑋(𝑖).  𝜖𝑞 has a 1𝑥1 error 

covariance matrix 𝐶𝜖𝑞 (or variance) as defined in Equation (5.4.5-1) and has a mean-value of zero.   

We utilize the defining equation (Equation 5.4-2) for the boundary of an error ellipsoid (a line segment, in 

this case), in order to compute 𝑟1,𝑝, the magnitude of the line segment or radial in the direction of interest 

such that the probability that |𝜖𝑞| ≤ 𝑟1,𝑝 is equal to a desired probability level 𝑝:  

𝜖𝑞𝑇𝐶𝜖𝑞
−1𝜖𝑞 = 𝑑1,𝑝

2,                            (5.4.5-2) 

where 𝑑1,𝑝 is the appropriate distance or normalized radius 𝑑 selected from the first column of either 

Table 5.4-1 or Table 5.4-2.    

We then solve the above equation assuming that the solution is of the form 𝑟1,𝑝𝜔, where 𝜔 is a unit vector 

in 1d space.  𝜔 also aligns with the direction of interest 𝜂 in 𝑛𝑥1 space: 

(𝑟1,𝑝𝜔)
𝑇
(𝜂𝑇𝐶𝑋𝜂)−1(𝑟1,𝑝𝜔) = 𝑑1,𝑝

2 ,                                (5.4.5-3) 

and since all terms in the brackets are also scalars, we have 

𝑟1,𝑝 = 𝑑1,𝑝√( 𝜂 𝑇𝐶𝑋𝜂).                   (5.4.5-4) 

Correspondingly, we define the “directed percentile” in 𝑛𝑥1 space as: 

𝑋𝑑𝑝 ≡ 𝑟1,𝑝𝜂.                     (5.4.5-5) 
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The 𝑛𝑥1 vector 𝑋𝑑𝑝 conveniently specifies both the applicable magnitude 𝑟1,𝑝 as well as the applicable 

direction 𝜂 in one vector.  The magnitude 𝑟1,𝑝 corresponds to the 𝑝th percentile of the component of the 

error 𝜖𝑋 in the specified direction 𝜂.   

Figure 5.4.5-1 illustrates the directed percentile corresponding to horizontal error (𝑛 = 2) and a desired 

probability (percentile) equal to 90% , i.e., 𝑋𝑑𝑝 = 𝑟1,𝑝𝜂 = 𝑟1,90𝜂 = (1.6449)(√( 𝜂 𝑇𝐶𝑋𝜂))𝜂. 

The directed percentile 𝑋𝑑𝑝 at the 90% probability level is the upper green arrow, and is along the 

specified direction of interest 𝜂, the orange unit vector.  The boundary of the 90% error ellipse is blue and 

corresponds to the error covariance matrix 𝐶𝑋.  The error ellipse’s radial vector 𝑋𝑟𝑎𝑑 (not the directed 

percentile) along the same direction of interest 𝜂 is the blue arrow.   

 

Figure 5.4.5-1: 90% error ellipse (blue), corresponding 90% error ellipse radial vector 𝑋𝑟𝑎𝑑 (blue arrow), 

and corresponding directed percentile 𝑋𝑑𝑝 (green arrow). 

There is a 90% probability that an arbitrary horizontal error is between the dashed green lines, i.e., an 

error whose component in the specified direction 𝜂 has a magnitude less than or equal to 𝑟1,90, the 

magnitude of the directed percentile.  We can also differentiate between components of error in the +𝜂 

direction and the −𝜂 direction, if so desired, as both are equally probable.  For example, there is a 5% 

probability ((100 − 90)/2) that a component of horizontal error in the +𝜂 direction exceeds 𝑟1,𝑝.  Also, 

the units for both the component of error and 𝑟1,𝑝 are one in the same, and typically meters. 
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Comparison to the error ellipse radial 

In general, the magnitude of the directed percentile 𝑋𝑑𝑝 does not equal the magnitude of the error 

ellipsoid radial vector 𝑋𝑟𝑎𝑑, as illustrated in Figure 5.4.5-1 for an error ellipse (𝑛 = 2).  It can be smaller 

or larger, depending on the shape of the error ellipsoid and the specified direction of interest.  For 

example, the magnitude of the directed percentile can range from approximately 0.77 to 2.00 times the 

magnitude of the error ellipse radial vector for error ellipses with a semi-major to semi-minor ratio ranging 

from 1 to 5.  When the error ellipse is circular, this ratio equals 1 and the magnitude of the direction 

percentile is 0.77 times the magnitude of the error ellipse radial vector. 

In summary, the error ellipsoid radial vector is not applicable to the problem of interest, only the directed 

percentile is. 

Note: for 𝑛𝑥1 errors 𝜖𝑋 and a specified probability level 𝑝, the magnitude of the error ellipsoid radial 

vector 𝑋𝑟𝑎𝑑 in the direction 𝜂 is equal to 𝑟𝑛,𝑝 = 𝑑𝑛,𝑝/√( 𝜂 𝑇𝐶𝑋
−1𝜂) via a direct application of Equation 

(5.4-2) and by setting 𝜖𝑋 = 𝑟𝑛,𝑝 𝜂 as the form for the solution to the equation. 

Note: the magnitude 𝑟𝑛,𝑝 of the error ellipsoid radial vector 𝑋𝑟𝑎𝑑 is sometimes termed the “predicted 

𝑋𝑋% radial”, or the “predicted radial at the 𝑋𝑋% probability-level”, when the error ellipsoid is an 𝑋𝑋% 

error ellipsoid. 

Note: as will be apparent in Section 5.5 with the definition of scalar accuracy metrics, 𝐿𝐸𝑋𝑋, computed 

using the error covariance matrix 𝐶𝜖𝑞 corresponding to the component of error 𝜖𝑞, is equal to the 

magnitude 𝑟1,𝑋𝑋 of the directed percentile 𝑋𝑑𝑝. 

5.4.6 Comparison of Covariance Matrices and related Error Ellipsoids 

It is not uncommon in the literature concerning advanced linear algebra, estimation theory, and 

probability/statistics to see the expressions 𝐵 ≥ 𝐴 or 𝐵 > 𝐴 for two error covariance matrices of the same 

dimension.  What does this really mean and why is it so important?   

First, by linear algebra convention, 𝐶 ≥ 0 symbolizes a positive semi-definite matrix 𝐶, and 𝐷 > 0 

symbolizes a positive definite matrix 𝐷.   In addition, the set of all 𝑛𝑥𝑛 positive definite matrices is a proper 

subset of the set of all 𝑛𝑥𝑛 positive semi-definite matrices.   If the matrix 𝐷 is also symmetric, it can be 

considered a valid error covariance matrix.  The formal definitions of a positive semi-definite matrix, a 

positive definite matrix, and a valid error covariance matrix were presented earlier in Section 5.3. 

In the following equations (5.4.6-1) – (5.4.6-5), we assume that both 𝐴 and 𝐵 are valid 𝑛𝑥𝑛 error 

covariance matrices, 𝑛 ≥ 1: 

Definitions for 𝑩 ≥ 𝑨 and 𝑩 > 𝑨:        

(1) 𝐵 ≥ 𝐴 is defined as 𝐵 − 𝐴 ≥ 0, i.e., (𝐵 − 𝐴) is a positive semi-definite matrix; and                 (5.4.6-1)  

(2) 𝐵 > 𝐴 is defined as 𝐵 − 𝐴 > 0, i.e., (𝐵 − 𝐴) is a positive definite matrix.                                     (5.4.6-2) 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
58 

Positive definite and positive semi-definite matrices were defined in Section 5.3 in terms of their 

eigenvalues.  Accordingly, in order to analytically compare 𝐴 and 𝐵, simply compute the eigenvalues of 

the matrix equal to their difference (𝐵 − 𝐴): 

 All positive, then  𝐵 > 𝐴                                               (5.4.6-3) 

 All non-negative (positive and zero), then 𝐵 ≥ 𝐴 

 All negative, then  𝐴 > 𝐵 

 All non-positive (negative and zero), then 𝐴 > 𝐵 

 A mixture of positive and negative, none of the above (inconclusive) 

What are the various properties and their implications corresponding to these definitions?  The following 

presents 3 such properties and discusses their implications. 

Assume that  𝑩 > 𝑨:                       

(1) 𝐵 > 𝐴 ⇒  {𝑡𝑟𝑎𝑐𝑒(𝐴) < 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛 }.                               (5.4.6-4) 

 The symbol “⟹“ corresponds to “implies” or “ensures that”.      

Thus, given that 𝐵 > 𝐴, the variance for each error component 𝑖 is smaller in 𝐴 than in 𝐵.   

Proof of property (1) 

i)  (𝐵 − 𝐴) > 0 by assumption 

ii)  𝑌𝑇(𝐵 − 𝐴)𝑌 > 0 for all 𝑛𝑥1 𝑌 not equal to zero, by definition of a positive definite matrix 

iii)  Let 𝑌′𝑇 = [0. . 1 . .0] have an entry of 1 in the 𝑖_𝑡ℎ component 

iv)  𝑌′𝑇(𝐵 − 𝐴)𝑌 = 𝐵(𝑖, 𝑖) − 𝐴(𝑖, 𝑖) > 0 via (ii) 

v)  therefore, 𝜎𝑖
2 of matrix 𝐵 >  𝜎𝑖

2 of matrix 𝐴 

vi)  therefore, 𝑡𝑟𝑎𝑐𝑒(𝐵) > 𝑡𝑟𝑎𝑐𝑒(𝐴). 

Property (1) can also be generalized to: 𝐵 ≥ 𝐴 ⟹ {𝑡𝑟𝑎𝑐𝑒(𝐴) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) ≤ 𝐵(𝑖, 𝑖) for all 𝑖 =

1, . . , 𝑛}; proof - simply substitute all > signs with their ≥ sign counterpart in the proof of property (1) 

above. 

One implication/application of property (1) is as follows: If 𝐴 and 𝐵 correspond to the solution error 

covariance matrices for the same but arbitrary state vector 𝑋 from Estimators a and b, respectively, 

Estimator a is a “better” estimator than Estimator b.  In fact, if the solution error covariance matrix 𝐵 

corresponds to any other estimator, and if 𝐴 < 𝐵 (or 𝐴 ≤ 𝐵), Estimator a is a minimum mean-square 

estimator by definition, i.e., better than any other estimator based on the mean-square cost function – 

see TGD 2d. 

(2) 𝐵 > 𝐴 ⇒ {𝐴 has a better error ellipsoid than 𝐵}.                                                                   (5.4.6-5) 
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For example, the left portion of Figure 5.4.6-1 is always applicable, and the right portion is never 

applicable, where the error ellipsoids 𝜖𝑋𝑇𝐴−1𝜖𝑋 = 𝑑2 and 𝜖𝑋𝑇𝐵−1𝜖𝑋 = 𝑑2 are plotted (𝑛 = 2, i.e., an 

error ellipse for this example).  This is intuitive: 𝐵 > 𝐴 implies that the error ellipsoid for 𝐴 is always 

better than the error ellipsoid for 𝐵, regardless where along the ellipsoidal boundary – the entire red 

ellipse is contained within (and not including) the boundary of the blue ellipse.   The right side of Figure 

5.4.6-1 is never applicable. 

 

Figure 5.4.6-1: 𝐵 > 𝐴 implies that the error ellipse 𝐴 corresponding to error covariance matrix 𝐴 is 

better than the error ellipse 𝐵 corresponding to error covariance matrix 𝐵; probability or confidence 

level of the ellipse is arbitrary as long as common (duplicate of Figure 4-5) 

Recall that an error ellipsoid of interest typically corresponds to a confidence ellipsoid at a specified (but 

arbitrary) level of confidence or probability. 

Proof of property (2) 

i)  𝐵 > 𝐴 implies that 𝐴−1 > 𝐵−1 

ii)  𝜖𝑋𝑇(𝐴−1 − 𝐵−1)𝜖𝑋 > 0 or 𝜖𝑋𝑇𝐴−1𝜖𝑋 > 𝜖𝑋𝑇𝐵−1𝜖𝑋  for all 𝜖𝑋 not equal to zero 

iii)  If 𝜖𝑋′𝑇𝐴−1𝜖𝑋′ = 𝑑2 at 𝜖𝑋 = 𝜖𝑋′, then 𝜖𝑋′𝑇𝐵𝜖𝑋′ < 𝑑2, consistent with the left side of Figure 5.4.6-1. 

iv)  Suppose there exists 𝜖𝑋 = 𝜖𝑋′ such that 𝜖𝑋′𝑇𝐵−1𝜖𝑋′ > 𝜖𝑋′𝑇𝐴−1𝜖𝑋′ corresponding to the right side 

of figure - this contradicts (ii) above; thus, we have proved property (2). 

Property (2) can also be generalized to: 𝐵 ≥ 𝐴 ⇒ {𝐴 almost always has a better ellipsoid than 𝐵}; 

proof - simply substitute all > and < signs with their ≥ and ≤ sign counterparts, respectively, in steps i-iii 
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in the proof of property (2) above.  Regarding the term “almost always”: 𝐴 “almost always” has a better 

ellipsoid than 𝐵, since strictly speaking, the two ellipses may share a common boundary at two points 

(𝑛 = 2), and two ellipsoids may share a common boundary along an ellipse (𝑛 = 3).  Thus, the left side of 

Figure 5.4.6-1 is still applicable, although slightly modified (e.g., the red ellipse is rotated such that it 

intersects the blue ellipse at two and only two points), and the right side of the figure remains applicable.  

This also assumes that 𝐵 ≥ 𝐴 in the “strict sense”, i.e., 𝐵 ≠ 𝐴  and 𝐵 > 𝐴  is not true. 

No longer assume that 𝑩 > 𝑨:                     

(3) {𝑡𝑟𝑎𝑐𝑒(𝐴) < 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛} ⇏  𝐵 > 𝐴                                  (5.4.6-6) 

The symbol “⇏“ corresponds to “does not imply”, i.e., 𝐵 > 𝐴 may or may not be true. 

Proof of property (3) by demonstration 

i)  Let 𝑛 = 2, 𝐴 = 𝐼2𝑥2, and  𝐵 = [
1.1 0.9
0.9 1.1

] .   

Thus, 𝑡𝑟𝑎𝑐𝑒(𝐴) < 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for 𝑖 = 1, . . ,2.   

ii)  At 𝑌′𝑇 = [1 −1], 𝑌′𝑇𝐴𝑌′ = 2 and  𝑌′𝑇𝐵𝑌′ = 0.4, thus  

𝑌′𝑇(𝐵 − 𝐴)𝑌′ < 0, and therefore it is not true that 𝐵 > 𝐴, i.e., it is not true that 𝑌𝑇(𝐵 − 𝐴)𝑌 > 0 for all 

𝑌 ≠ 0. 

iii)  At 𝜖𝑋′𝑇 = [1 0],  𝜖𝑋′𝑇𝐴−1𝜖𝑋′ =1, and at 𝜖𝑋′′𝑇 = [1/√2.75 0] ≅ [0.6 0], 𝜖𝑋′′𝑇𝐵−1𝜖𝑋′′ = 1; 

therefore the error ellipse for 𝐴 is not better than the error ellipse for 𝐵 over the entire boundary of the 

former. 

This is further illustrated using the specific error covariance matrices listed in step i above by plotting their 

corresponding standard error ellipses (𝑑 = 1) in Figure 5.4.6-2.  The error ellipse for 𝐴 is not better than 

the error ellipse for 𝐵; in fact, the error ellipse for 𝐵 contains less area than the error ellipse for 𝐴 (1.99 

versus 3.14 meters-squared).   
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Figure 5.4.6-2: Even though  𝐴(1,1) < 𝐵(1,1) and 𝐴(2,2) < 𝐵(2,2), the error ellipse for A (red) is not 

better than the error ellipse for B (blue) everywhere in this example 

The matrix (𝐵 − 𝐴) in this example has both positive and negative eigenvalues; hence, neither 𝐵 ≥ 𝐴 nor 

𝐴 ≥ 𝐵.  Errors associated with the blue ellipse and along the direction of its semi-major axis are expected 

to have larger errors (magnitudes) than those associated with the red ellipse along this same direction.  

Similarly, errors associated with the blue ellipse and along the direction of its semi-minor axis are expected 

to have smaller errors (magnitudes) than those associated with the red ellipse along this same direction.   

Finally, property (3) can also be generalized to: {𝑡𝑟𝑎𝑐𝑒(𝐴) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) ≤ 𝐵(𝑖, 𝑖) for all 𝑖 =

1, . . , 𝑛} ⇏  𝐵 ≥ 𝐴; the proof of property (3)  is easily modified appropriately, and the above figure remains 

applicable. 

Directional comparisons 

We close out this section on the comparison of error covariance matrices from those involving entire 

matrices, for example 𝐵 > 𝐴 or equivalently (𝐵 − 𝐴) > 0, to comparisons of error covariance matrices 

and related errors in specific directions.  The latter can be particularly helpful when neither 𝐵 > 𝐴 nor 

𝐴 > 𝐵 as applicable in the previous example (Figure 5.4.6-2). 

Assume that we are interested in the uncertainty associated with 𝑛𝑥𝑛 error covariance matrices 𝐴 and 𝐵 

in a specific direction.  Let this direction be represented by a unit vector 𝜂 relative to the same coordinate 

system applicable to both error covariance matrices (e.g., a common local tangent plane).  Compute and 

compare the following standard deviations of error along this direction (see Section 5.4.5, Equation (5.4.5-

1)): 
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𝑎 = √𝜂𝑇𝐴𝜂,                        (5.4.6-7) 

𝑏 = √𝜂𝑇𝐵𝜂. 

Note that, since the above is for the purposes of comparison, computation of standard deviations instead 

of percentiles is both simple and appropriate. 

Thus, for example, if 𝑋𝑎 is an estimate of a geolocation of interest associated with error covariance matrix 

𝐴 and 𝑋𝑏 is an estimate of the same geolocation associated with error covariance matrix 𝐵, we would 

select 𝑋𝑎 if 𝑎 < 𝑏.  Of course, if we had already determined that 𝐵 > 𝐴, we would have selected 𝑋𝑎 

regardless the specific 𝜂, since in this case, 𝑎 < 𝑏 in all directions. 

5.4.7 Error ellipsoids: intersection and union 

Sometimes we are interested in the “intersection” and “union” of two valid error covariance matrices 𝐴 

and 𝐵 and their corresponding error ellipsoids.  The two matrices have the same 𝑛𝑥𝑛 dimension.  The 

appropriate definitions follow: 

(1) 𝐶𝐴∩𝐵 ≡ 2(𝐴−1 + 𝐵−1)−1, equal to the harmonic mean of matrices 𝐴 and 𝐵.               (5.4.7-1) 

(2) 𝐶𝐴∪𝐵 ≡ (𝐴 + 𝐵) − 𝐶𝐴∩𝐵                     (5.4.7-2) 

We term the 𝑛𝑥𝑛 error covariance matrix 𝐶𝐴∩𝐵 the “intersection error covariance”; similarly, we term the 

𝑛𝑥𝑛 error covariance matrix 𝐶𝐴∪𝐵 the “union error covariance”.  These terms follow from the properties 

of their corresponding error ellipsoids as illustrated in the following example (𝑛 = 2): 

Let error 𝜖𝑋𝑎 = [𝜖𝑥𝑎 𝜖𝑦𝑎]𝑇 with a mean-value of zero and covariance matrix 𝐴 = [
8 5
5 6

]; 

Let error 𝜖𝑋𝑏 = [𝜖𝑥𝑏 𝜖𝑦𝑏]𝑇 with a mean-value of zero and covariance matrix 𝐵 = [
1 0
0 20

]. 

Figure 5.4.7-1 presents the corresponding error ellipses, in this case 50% confidence ellipses, for error 

covariance matrices 𝐴 (blue), 𝐵 (blue), (𝐴 + 𝐵) (thick blue), 𝐶𝐴∩𝐵 (red dashes), and 𝐶𝐴∪𝐵 (red).  
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Figure 5.4.7-1: Various error ellipses corresponding to covariance matrices 𝐴 and 𝐵  

Note that the error ellipse corresponding to the intersection error covariance matrix 𝐶𝐴∩𝐵 (red dashes) is 

an ellipsoidal approximation of the intersection of the interiors of the error ellipses corresponding to the 

error covariance matrices 𝐴 (blue) and 𝐵 (blue).  The error ellipse corresponding to the union error 

covariance matrix 𝐶𝐴∪𝐵 (red) is an ellipsoidal approximation of the union of the interiors of the error 

ellipses corresponding to the error covariance matrices 𝐴 (blue) and 𝐵 (blue).  It does not “double count” 

their intersection; hence, is smaller than the error ellipse for (𝐴 + 𝐵), i.e., in terms of covariance matrixes 

per se, 𝐶𝐴∪𝐵 < (𝐴 + 𝐵). 

The following proves that the error covariance matrices 𝐶𝐴∩𝐵 and 𝐶𝐴∪𝐵 are valid (positive definite) 

covariance matrices, where both 𝐴 and 𝐵 are assumed positive definite as stated previously: 

(3) 𝐶𝐴∩𝐵 is positive definite                                    (5.4.7-3) 

Proof  

i)  the inverse of a positive definite matrix is positive definite (see Section 5.3.2) 

ii)  the positive sum of two positive definite matrices is positive definite (see Section 5.3.2)  

iii)  hence, 𝐶𝐴∩𝐵 = 2(𝐴−1 + 𝐵−1)−1 is positive definite. 

(4) 𝐶𝐴∪𝐵 is positive definite                                                                           (5.4.7-4) 
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Proof 

i)  (𝐴−1 + 𝐵−1) > 𝐴−1                 

ii)  (𝐴−1 + 𝐵−1)−1 < 𝐴 

iii)  2(𝐴−1 + 𝐵−1)−1 < (𝐴 + 𝐵) 

iv)  (𝐴 + 𝐵) − 2(𝐴−1 + 𝐵−1)−1 = (𝐴 + 𝐵) − 𝐶𝐴∩𝐵 = 𝐶𝐴∪𝐵 > 0, i.e., positive definite 

(In addition, all the above matrices are symmetric as well, also required for an error covariance matrix.) 

Also, the definitions corresponding to Equations (5.4.7-1) and (5.4.7-2) can be extended to more than two 

covariance matrices, if need be.  For example, assume covariance matrices 𝐴, 𝐵, and 𝐸 are relevant.  

Compute: 

𝐶𝐴∪𝐵 ≡ 𝐷, followed by 𝐶𝐷∪𝐸,or symbolically 𝐶((𝐴∪𝐵)∪𝐸). 

However, it must be pointed out that this approach is not associative, e.g., 𝐶((𝐴∪𝐵)∪𝐸) ≠ 𝐶((𝐴∪(𝐵∪𝐸)) in 

general, but typically 𝐶((𝐴∪𝐵)∪𝐸) ≅ 𝐶((𝐴∪(𝐵∪𝐸)). 

Finally, there are important applications regarding the error covariance matrices 𝐶𝐴∩𝐵 and 𝐶𝐴∪𝐵  which 

include the following: 

5.4.7.1 Shared statistical error model (union of error covariance matrices) 

An application for 𝐶𝐴∪𝐵 corresponds to an error that corresponds to either 𝜖𝑋𝑎 or 𝜖𝑋𝑏.  It may be unknown 

which of these errors is applicable for a particular application, or it may be that a common or “shared” 

statistical error model is to be used for both for practicality.  Either way, the error is defined as “𝜖𝑋𝑎 or 

𝜖𝑋𝑏”, not “𝜖𝑋𝑎 and (+) 𝜖𝑋𝑏”.  The error covariance matrix (𝐴 + 𝐵) corresponds to the latter and is too 

conservative (pessimistic) for the former.  The error covariance matrix 𝐶𝐴∪𝐵 is “tailored” to the former.  It 

is virtually the smallest valid error covariance matrix (or equivalent error ellipsoid) that approximately 

contains both 𝐴 and 𝐵, i.e.,  𝐴 ≈≤ 𝐶𝐴∪𝐵 and 𝐵 ≈≤ 𝐶𝐴∪𝐵.   

5.4.7.2 Covariance Intersection for the combination of estimates with unknown correlation 

A particularly useful application for 𝐶𝐴∩𝐵 corresponds to 𝑋𝑎 and 𝑋𝑏, where both correspond to initial 

estimates of an unknown state vector 𝑋 and contain errors 𝜖𝑋𝑎 and 𝜖𝑋𝑏, respectively, which are 

correlated by an unknown amount.   We want to estimate 𝑋 by appropriately combining the information 

in 𝑋𝑎 and 𝑋𝑏. 

Why is this so important?   

As illustrated throughout these Technical Guidance Documents, correlation of errors is extremely 

important as it affects both the accuracy of solutions and the reliability of their corresponding predicted 

accuracies.  And given a reasonable estimate of these correlations, methods presented in these 

documents do just that.  However, in some cases, even though correlation is known to be applicable, 

reliable estimates of their values are not available.    
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This will occur, for example, if two initial estimates of a geolocation (𝑋𝑎 and 𝑋𝑏,) were generated using 

measurements from the same sensor/platform applicable within a few minutes of each other and/or 

corresponding to different sensor-to-ground geometries (sensor orientations).  Such sensor/platform 

errors correspond to stochastic processes, but in this case, stochastic processes with unknown temporal 

correlation characteristics: we have a reasonable estimate of error magnitudes but not how errors ∆𝑡 

apart are (statistically) related.  Depending on the degree of temporal correlation, they could range from 

bias-like to virtually uncorrelated – usually somewhere closer to bias-like for small ∆𝑡.  And because the 

two initial estimates are based on these measurements, they are correlated an unknown amount as well.  

However, we want to combine both estimates for a better estimate of the true geolocation (𝑋) with 

appropriate solution error covariance matrix.  

The Method of Covariance Intersection provides such a solution and can also be extended to a time-series 

of 𝑚 > 2 estimates via sequential estimation.  The following details the basic problem and its solution 

assuming two initial estimates.  We also “tailor” the problem and solution to correspond to WLS 

estimators (a Kalman filter could also be implemented - see TGD 2d (Estimators and their QC)). 

Method of Covariance Intersection: assumptions and solution 

Let us designate a measurement vector for the combined solution for 𝑋 as containing the two initial 

estimates: 𝑀 = [𝑋𝑎
𝑇 𝑋𝑏

𝑇]𝑇 with error 𝜖𝑀 = [𝜖𝑋𝑎
𝑇 𝜖𝑋𝑏

𝑇]𝑇 and corresponding error covariance matrix 

Σ = 𝐸{𝜖𝑀𝜖𝑀𝑇} = [
𝐴 𝐷
𝐷𝑇 𝐵

], where 𝐷 is the cross-covariance between 𝜖𝑋𝑎 and 𝜖𝑋𝑏 and has unknown 

value.  We also assume that the mean-values for 𝜖𝑋𝑎 and 𝜖𝑋𝑏  are 0 as is typical corresponding to 

estimators (estimates).   

Define �̂� as the best estimate of 𝑋 computed using the measurement vector 𝑀 and assuming that 𝐷 = 0, 

i.e., assuming that the errors corresponding to 𝑋𝑎 and 𝑋𝑏 are uncorrelated – a reasonable approach since 

their correlation or cross-covariance matrix 𝐷 is unknown.   

Correspondingly, per the standard WLS solution and assuming zero correlation between the initial 

estimates’ errors: 

𝐶𝑋 = (𝐴−1 + 𝐵−1)−1, and                  (5.4.7.2-1) 

�̂� = 𝐶𝑋(𝐴−1𝑋𝑎 + 𝐵−1𝑋𝑏). 

However, the correct error covariance matrix for �̂� is not equal to 𝐶𝑋 because the errors in 𝑋𝑎 and 𝑋𝑏 are 

correlated contrary to the above assumption.  𝐶𝑋 is typically optimistic, which is problematic and can lead 

to dire consequences in many applications when unknown correlations are not insignificant: divergence 

of a sequential estimator, a geolocation with an error much larger than corresponding accuracy 

predictions based on its error covariance matrix, etc. 

In order to deal with this problem in a theoretically correct manner, we can apply the Method of 

Covariance Intersection [25,33,35].  The Covariance Intersection (ci) solution applied to our problem is as 

follows:  
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𝐶𝑐𝑖 = [𝜔𝐴−1 + (1 − 𝜔)𝐵−1)]−1 , and                              (5.4.7.2-2)  

𝑋𝑐𝑖 = 𝐶𝑐𝑖[𝜔𝐴−1𝑋𝑎 + (1 − 𝜔)𝐵−1𝑋𝑏], 

where the scalar parameter 0 ≤ 𝜔 ≤ 1, and can be selected to minimize an arbitrary measure or metric 

of the covariance matrix 𝐶𝑐𝑖.  In addition, 𝐶𝑐𝑖 ≥ 𝐶𝑡𝑟𝑢𝑒 ≡ 𝐸{𝜖𝑋𝑐𝑖𝜖𝑋𝑐𝑖
𝑇}, where 𝐶𝑡𝑟𝑢𝑒, is the true but 

unknown error covariance matrix for the Covariance Intersection solution 𝑋𝑐𝑖. 

We select the value 𝜔 = 0.5 – a reasonable choice since the weights in Equation (5.4.7.2-2) already 

involve both 𝐴−1 and 𝐵−1 which are also used as weights directly in the WLS solution (Equation 5.4.7.2-

1).   

Correspondingly: 

𝐶𝑐𝑖 = [0.5𝐴−1 + 0.5𝐵−1]−1 = 2(𝐴−1 + 𝐵−1)−1 = 𝐶𝐴∩𝐵 = 2𝐶𝑋, and 

𝑋𝑐𝑖 = 𝐶𝑐𝑖[0.5𝐴−1𝑋𝑎 + 0.5𝐵−1𝑋𝑏] = 0.5𝐶𝑐𝑖[𝐴
−1𝑋𝑎 + 𝐵−1𝑋𝑏] = �̂� . 

Thus, the Covariance Intersection solution corresponds to the WLS solution �̂� , but has a corresponding 

error covariance matrix equal to 𝐶𝐴∩𝐵 , or twice the WLS solution’s error covariance matrix 𝐶𝑋 .  

In summary: 

𝑋𝑐𝑖 = �̂�, 𝐶𝑐𝑖 = 𝐶𝐴∩𝐵 = 2𝐶𝑋, and 𝐶𝑐𝑖 ≥ 𝐶𝑡𝑟𝑢𝑒.                            (5.4.7.2-3) 

Note: as proven in reference [25], 𝐶𝑐𝑖 ≥ 𝐶𝑡𝑟𝑢𝑒 is also true if 𝐴 ≥ 𝐴𝑡𝑟𝑢𝑒 and 𝐵 ≥ 𝐵𝑡𝑟𝑢𝑒, i.e., not only are 

the correlation of errors between the initial estimates unknown, the error covariance matrices for the 

initial estimates need not equal their true counterparts as long as they are conservative. 

Specific Example 

Figure 5.4.7.2-1 illustrates the above assuming a two-dimensional state vector 𝑋 for ease of example and 

initial estimates 𝑋𝑎 and 𝑋𝑏  with error covariance matrices 𝐴 and 𝐵, respectively.   Their corresponding 

error ellipses are designated “ellipse 𝐴” (red) and “ellipse 𝐵” (blue) and are assumed 50% confidence 

ellipses for specificity, although any common confidence level is also applicable. 
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Figure 5.4.7.2-1: Covariance matrix  𝐶𝐴∩𝐵 is a practical upper bound for the true but unknown error 

covariance matrix for the estimate 𝑋𝑐𝑖 = �̂�  which is based on two initial estimates 𝑋𝑎 and 𝑋𝑏 with error 

covariance matrices 𝐴 and 𝐵, respectively, and unknown correlation of errors (duplicate of Figure 4-6). 

𝐶𝐴∩𝐵 is twice the error covariance matrix 𝐶𝑋 obtained with the standard WLS solution when errors are 

assumed uncorrelated.  However, the use of 𝐶𝑋 is incorrect (optimistic) while the use of 𝐶𝐴∩𝐵 is correct in 

the sense that it is a practical upper bound (conservative) to the true solution error covariance matrix.  

Also, 𝐶𝐴∩𝐵 is significantly less than both error covariance matrices 𝐴 and 𝐵, where 𝐴 is applicable if the 

initial estimate  𝑋𝑎 were used alone and 𝐵 is applicable if the initial estimate 𝑋𝑏 were used alone. 

The primary “reason” that 𝐶𝐴∩𝐵 has the desirable properties illustrated in the above example is due to 

the different orientations of ellipse 𝐴 and ellipse 𝐵 – major uncertainties are in different directions.  For 

example, if the two error ellipses were not oriented differently, and more specifically, were identical 

because the error covariance matrix 𝐴 was equal to the error covariance matrix 𝐵, 𝐶𝐴∩𝐵 =

2(𝐴−1 + 𝐵−1)−1 = 2(2𝐴−1)−1 = 𝐴, i.e., no improvement.  This makes sense because the unknown 

correlation between the errors in the two initial estimates 𝑋𝑎 and 𝑋𝑏 could approach 100%, in which case, 

given one initial estimate, there is no new information in the other.  Finally, although the above example 

corresponded to 2𝑥1 state vectors, arbitrary 𝑛𝑥1 state vectors of the same dimension are applicable as 

well, where  𝑛 ≥ 1. 

Potential applications of the Method of Covariance Intersection also include the combination of multiple 

single-image (“mono”) extractions or multiple multi-image extractions (MIGs) that are based on image 

measurements from the same sensor(s) with non-trivial but unknown sensor biases.  These unknown 

sensor biases induce unknown correlation of errors between the multiple extractions. 
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5.5 Predictive Scalar Accuracy Metrics: Linear Error, Circular Error, and 

Spherical Error 
This section of the document assumes that the underlying probability distribution of errors is Gaussian in 

order to assign probabilities to the predictive scalar accuracy metrics. 

Scalar accuracy metrics are used to summarize accuracy and predicted accuracy, and more specifically, 

regarding the latter, approximate various portions of the corresponding 3d (3𝑥3) error covariance matrix: 

Linear Error (LE) for z, Circular Error (CE) for x-y, and Spherical Error (SE) for x-y-z.  They also correspond 

to a specific level of probability.  In this document, if not specified explicitly, such as CE_50 for 50%, they 

are assumed to be at the 90% or 𝑝 = 0.9 probability level.   

The derivation and practical calculations of these scalar metrics as predictive statistics are presented in 

this section and assume a Gaussian distribution of errors.  Errors are also assumed to have a mean-value 

of zero unless specifically stated otherwise.  If non-zero, the underlying data could simply be corrected by 

the mean-value, with a resultant mean-value of error set equal to zero.   (Note that a non-zero mean-

value is sometimes termed a “bias”.) 

CE corresponds to horizontal error and is computed from the upper left 2𝑥2 portion of the full 3𝑥3 error 

covariance matrix 𝐶𝑋.  CE corresponds to the radius of a circle, centered at the origin, such that there is a 

90% probability that the horizontal error resides within the circle, or equivalently, if the circle is centered 

at a target solution, there is a 90% probability that the true target horizontal location resides within the 

circle.  LE corresponds to a vertical error and is computed from the lower right 1𝑥1 portion of the full 3𝑥3 

error covariance matrix 𝐶𝑋.  There is a 90% probability that the vertical error resides within +/– the LE 

value.  (Note that we have assumed that the underlying x-y-z coordinate system is a local tangent plane 

system, i.e., x and y are horizontal components and z the vertical component, as is typical.) 

 

CE and LE can also be considered approximations to 2d and 1d (90%) error ellipsoids, respectively.  Note 

that a 2d error ellipsoid is an ellipse, and a 1d error ellipsoid is a line.  See Section 5.4 for a discussion on 

error ellipsoids, which are equivalent to the error covariance matrix and provide a visual display of the 

expected magnitude of errors, their directivity, and the interrelationships of their components.   

 

CE and LE are easy to understand, visualize, and are in common use for military applications.  The scalar 

accuracy metric SE, which corresponds to the radius of a 3d sphere, is also used to approximate the 

corresponding full 3𝑥3 error covariance matrix, or equivalently, the 3d (90%) error ellipsoid.  Alternatively, 

the 3d error ellipsoid can be approximated by a CE-LE error cylinder, as described below; however, this 

requires two scalar metrics (CE and LE) as opposed to just one for SE. 

 

Figures 5.5-1 and 5.5-2 presents examples of CE and a CE-LE cylinder, respectively, that approximate the 

upper left 2𝑥2 and full 3𝑥3 of the following error covariance matrix:  
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𝐶𝑋 = [

𝜎𝑥
2 𝜌

𝑥𝑦
𝜎𝑥𝜎𝑦 𝜌

𝑥𝑧
𝜎𝑥𝜎𝑧

. 𝜎𝑦
2 𝜌

𝑦𝑧
𝜎𝑦𝜎𝑧

. . 𝜎𝑧
2

] = [
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9

. 122 0.8 ∙ 12 ∙ 9

. . 92

].    (5.5-1) 

 

 

Figure 5.5-1: CE Circle vs Ellipse (duplicate of Figure 4-7) 

 

Figure 5.5-2: CE-LE Cylinder vs Ellipsoid (duplicate of Figure 4-8); 

note the change in x-axis orientation relative to the previous figure 

The top and bottom of the CE-LE cylinder correspond to a circle with radius CE meters.  The wall of the 

cylinder is twice the length LE meters.  
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The amount of probability enclosed by the CE-LE cylinder is between 81-90%, depending how the vertical 

errors are correlated with the horizontal errors – if zero correlation, the enclosed probability is 81%, i.e., 

(0.902), if highly (positive or negative) correlated, the enclosed probability approaches 90%.   

(In order to derive the actual probability enclosed by the cylinder when vertical errors are correlated with 

horizontal errors, i.e., 𝐶𝑋(1,3) ≠ 0 and/or 𝐶𝑋(2,3) ≠ 0, the multi-variate Gaussian probability density 

function is integrated over the three-dimensional region defined by the CE-LE cylinder.  That is, Equation 

(5.4.2-1) is implemented with region 𝑅 defined as the specific CE-LE cylinder of interest.) 

Of course, LE (alone) approximates the lower right 1𝑥1 of the error covariance matrix specified in Equation 

(5.5-1).  In fact, as opposed to CE and SE, its approximation is exact, since both LE and the 1x1 error 

covariance matrix one can be derived from the other, given that the error distribution is assumed Gaussian 

and that the level of probability specified. 

The 3d error ellipsoid can also be approximated directly via SE, the radius of the SE spheroid that encloses 

90% of the probability.  This is depicted in Figure 5.5-3 for the same 3𝑥3 error covariance matrix detailed 

earlier.  Note that the spheroid requires significantly more volume than does the 3d error ellipsoid to 

enclose the specified level of probability.  (And, of course, as discussed in Section 5.4.3, the 3d error 

ellipsoid requires the least volume over all shapes.)  This is to be expected: SE requires only one number, 

whereas the 3d error ellipsoid (error covariance matrix) requires 6 unique numbers and contains much 

more information. 

 

Figure 5.5-3: SE Spheroid vs. Ellipsoid 

A desirable feature of scalar accuracy metrics is that they provide a natural representation of accuracy 

and a convenient summary of predicted accuracy.  In fact, by definition, they have a specified probability 
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of error associated with them.  They are also used for the categorization of ordinance characteristics.  

However, scalar accuracy metrics do have limitations as documented in TGD 1 (Overview and 

Methodologies); thus, predictive scalar accuracy metrics should supplement but not replace the 

corresponding error covariance matrix. 

A caveat regarding sample statistics: 

Finally, before describing the computation of predictive scalar accuracy metrics, we want to emphasize 

the following point: The computation of sample-based scalar accuracy metrics is based on a collection of 

sample statistics of error and is presented in TGD 2b (Sample Statistics).  It primarily relies on the use of 

order statistics.  The calculations for predictive scalar accuracy metrics presented in this section are based 

on the use of predictive statistics.  And although they could also be used for the calculation of sample-

based scalar accuracy metrics using sample-based equivalents of the predictive statistics, this is not 

recommended – order statistics are superior for use with sample statistics. 

Overview of the recommended computational procedures:  the “high fidelity” baseline or “standards” 

Sections 5.5.1-5.5.3 detail the computation of the predictive scalar accuracy metrics LE, CE, and SE, 

respectively.  The error covariance matrix 𝐶𝑋 is assumed to correspond to the relevant portion of the 

original 3x3 error covariance matrix 𝐶𝑋, i.e., the lower right 1𝑥1 for LE, the upper left 2𝑥2 for CE, and the 

full 3𝑥3 for SE.   This error covariance matrix is a predictive statistic. 

Each of these sections includes appropriate derivations, followed by a subsection with the corresponding 

calculation algorithm.  Simple pseudo-code is also provided in Appendix C.1 for the calculation of all of 

the predictive scalar accuracy metrics.   

Derivations include those for specific levels of probability: 𝑝 = 0.5, 0.9, 0.95, 0.99, 𝑎𝑛𝑑 0.999, or in terms 

of percent: 𝑋𝑋 = 50, 90, 95, 99, 𝑎𝑛𝑑 99.9; for example, CE_95 corresponding to XX=95.  Corresponding 

algorithms and pseudo-code provide practical high-fidelity approximations to their theoretical, exact 

calculation (analytic) counterparts that are also presented at the start of each of the Sections 5.5.1-5.5.3.   

Special Case for easy reference and easy computation of scalar accuracy metrics 

A special case of the “high-fidelity” baseline that was summarized above is only applicable when the 

relevant portion of the error covariance matrix is equal to 𝜎2𝐼𝑘𝑥𝑘, where 𝑘 =1, 2, or 3, and is presented 

in Table 5.5-1.  Corresponding computations of the scalar accuracy metrics are trivial. 
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Table 5.5-1: Standard deviation to scalar accuracy metric conversion factors (special case) 

 

This special case also assumes that the mean-value of error is equal to zero, as is typical for predictive 

statistics. 

The following provide two examples of the special case: 

(1) 𝐶𝑋 = [
𝜎2 0 0
0 𝜎2 0
0 0 𝜎2

], then 𝐿𝐸90 = 1.6449𝜎, 𝐶𝐸90 = 2.1460𝜎, and 𝑆𝐸90 = 2.5003𝜎.           (5.5-2) 

(2) 𝐶𝑋 = [

𝜎ℎ
2 0 0

0 𝜎ℎ
2 0

0 0 𝜎𝑣
2

], then 𝐿𝐸90 = 1.6449𝜎𝑣, 𝐶𝐸90 = 2.1460𝜎ℎ,                                                 (5.5-3) 

and 𝑆𝐸90 cannot be computed using this method since we assume that 𝜎𝑣 ≠ 𝜎ℎ. 

The conversion factors in Table 5.5-1 correspond to the rigorously derived distance or normalized radius 

d in Table (5.4-1) of Section 5.4 on the error ellipsoid – there are no approximation errors involved.  The 

conversion factors are relevant since the corresponding error ellipsoids are “spherical” for this special 

case.  This is demonstrated as follows using the defining equation (Equation 5.4-2) for the boundary of an 

error ellipsoid: 

𝜖𝑋𝑇(𝜎2𝐼𝑘𝑥𝑘)−1𝜖𝑋 = 𝑑2, and therefore,          (5.5-4) 

|𝜖𝑋| = 𝜎𝑑,  

 a “spherical” ellipsoid, either a line segment (𝑚 = 1), a circle (𝑚 = 2), or a sphere (𝑚 = 3).  The 

magnitude of the ellipsoidal radial is equal to the scalar 𝜎𝑑 in all directions. 

It is not uncommon for the error covariance matrix associated with a priori error modeling to correspond 

to the above special case because it is simple.  However, it is not applicable to more sophisticated a priori 

error modeling or to “calculated” error covariance matrices corresponding to extracted geolocations 

based on estimators (WLS, Kalman filters, etc.), etc.  These error covariance matrices rarely have the same 

variance (or standard deviation) for all of the error components, and the components are almost always 

correlated. 

XX LEXX CEXX SEXX

probability in % Linear Error Circular Error Spherical Error

50 0.6745 σ 1.1774 σ 1.5382 σ

90 1.6449 σ 2.1460 σ 2.5003 σ

95 1.9600 σ 2.4477 σ 2.7955 σ

99 2.5758 σ 3.0349 σ 3.3682 σ

99.9 3.2905 σ 3.7169 σ 4.0336 σ

Standard Deviation to Scalar Accuracy Metric Conversion Factors 

(error components uncorrelated with common standard devation σ)



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
73 

In summary, it is important to note that the above special case is just that – a special case.  It cannot 

compute the scalar accuracy metrics properly for the general case, i.e., corresponding to a general error 

covariance matrix 𝐶𝑋 and possibly to a non-typical case when the mean-value of error is not equal to zero.  

Sections 5.5.1-5.5.3 provide the appropriate algorithms and pseudo-code for the general case. 

“Low-fidelity” approximations/computational procedures that are not recommended  

 

There are additional approximations/algorithms available besides those presented in Section 5.5.1-5.5.3, 

such as: 

1) the “rms approximation”: CE_90=2.15 rms(sigma_x,sigma_y), and 

2) the “average approximation” CE_90=2.15 avg(sigma_x,sigma_y) 

 

These are simpler, but are lower fidelity.  As such, they are not documented further, as the high-fidelity 

“standards” or baseline that are provided in Sections 5.5.1-5.5-3 are easily implemented in today’s 

computer environment.  However, for further insight, Figure 5.5-4 does present a comparison of various 

CE_90 computation methods for a specific error ellipse (black): the high-fidelity baseline method (blue), 

the rms approximation (red), and the average approximation (green).  The two low-fidelity 

approximations for CE_90 are approximately 10% too small, i.e., optimistic.  As documented later, the 

baseline CE_90 computation method has a computation (approximation) error on the order of only 0.01 

% of the correct CE_90 value.  Finally, note that the square root of the largest eigenvalue and the square 

root of the smallest eigenvalue of the underlying 2𝑥2 error covariance matrix are the semi-major and 

semi-minor axes of the ellipse in Figure 5.5-4.  The ratio of the semi-minor to semi-major axis is 

approximately 𝑟 = 0.1 in this example.  For other examples corresponding to less elongated error ellipses 

(𝑟 → 1), the difference between the computation methods becomes less significant. 

 

 
Figure 5.5-4: Comparison of CE_90 computation methods: high-fidelity baseline (blue),  

“rms approx” (red), “average approx” (green) 
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Additional “other” approximation/computational procedures that are not recommended: polynomials 

Another method for the approximate computation of CE_50 and other scalar accuracy metric is based on 

the use of pre-calculated polynomials.  In particular, the polynomial for CE50 is function of the ratio 𝑟 of 

the error covariance matrix eigenvalues, with outputs scaled accordingly based on the actual error 

covariance’s (maximum) eigenvalue.  The polynomial was previously fit to CE50-to-𝑟 correspondences 

assuming a maximum eigenvalue equal to 1.  Although polynomials perform well for most values of the 

eigenvalue ratio, they do not perform as well for small ratios, i.e., elongated error ellipses.  Also, they 

typically do not address non-zero mean-values of error, if applicable.   As such, they are not included in 

Sections 5.5-1-5.5.3 either.  However, for those interested, reference [26] presents examples. 

Accommodation of non-zero mean-values 

As mentioned earlier, the mean-value of predictive errors is almost always assumed zero for applications 

of interest.  However, Sections 5.5.1-5.5.3 provide solutions when the mean-value is not assumed zero.  

However, by definition, the corresponding line (LE), circle (CE), and spheroid (SE) are still centered at the 

origin, not the mean-value of error.  Thus, for example, if CE is of interest and given a specific error 

covariance matrix 𝐶𝑋, there is an algorithm to compute CE_50 assuming a mean-value �̅� = 0.  If, on the 

other hand, if the specific error covariance is about a non-zero mean-value that is also specified, there is 

an algorithm to compute CE_50 as well, let us call this “CE_50_mv” here for specificity.  Both algorithms 

are presented in Sections 5.5.2 (CE) with pseudo-code provided in Appendix C.1.   (The algorithm that 

handles non-zero mean-values is very flexible in that it handles arbitrary mean-values, including zero, i.e., 

can be used for all situations, if so desired.) 

More specifically, CE_50_mv is the radius of a circle about the origin, not the radius of a circle about the 

mean-value (location) that encloses 50% probability.  Thus, CE_50_mv does not simply equal 

CE_50_mv_approx = |�̅�|+CE_50, which encloses 80% probability, significantly more than the desired 50% 

probability, as illustrated in Figure 5.5-5: 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
75 

 

Figure 5.5-5: Accounting for a non-zero mean value (mv) during the computation of CE_50: the correct 

way “CE_50_mv” (red) versus the low-fidelity approximation “CE_50_mv_approx” (blue) 

We close out this introductory section (section 5.5) on predicted scalar accuracy metrics and their 

computation with a comment regarding alternate terminology and notation: 

Alternate terminology and notation 

CE_XX is also sometimes written as CEXX.  In addition, CE_50 is sometimes referred to as “circular error 

probable” or “CEP”.   Similar comments are applicable to LE and SE.   

In Sections 5.5.1-5.5.3 of this document, the explicit error notation “𝜖” is dropped for convenience. 

5.5.1 Linear Error (LE) 

The following analytic formulation for LE at the XX % probability level is a straightforward application of 

the Gaussian probability density function and its properties to the definition of LE provided in Section 5.5.  

However, the direction 𝑧 of the line segment is general and does not necessarily correspond to vertical as 

assumed in Section 5.5. 

 

LE_XX is defined as that line length L such that: 

 

𝑝 =
1

(2𝜋)1/2𝜎𝑧
∫ 𝑒−1/2((𝑧−�̅�)2/𝜎𝑧

2)  𝑑𝑧,                    (5.5.1-1) 
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integrated over the region √𝑧2 ≤ 𝐿, and where probability 𝑝 = 𝑋𝑋/100, 1d error 𝜖𝑋 = 𝜖𝑧 is defined as 

𝑧 for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined as 𝑧̅, and 1 × 1 error covariance matrix 𝐶𝑋 

about the mean defined as 𝜎𝑧
2.  Note that if the mean-value is not zero, the length 𝐿 is still relative to the 

origin per the standard definition of LE_XX. 

 

If we assume that the mean-value of error is zero, and change variables such that 𝑧/(𝜎𝑧√2) → 𝑧∗, 

Equation (5.5.1-1) can be rewritten as: 

 

𝑝 =
2𝜎𝑧√2

(2𝜋)1/2𝜎𝑧
∫ 𝑒−𝑧∗2  𝑑𝑧∗𝐿∗

0
 = 

2

(𝜋)1/2 ∫ 𝑒−𝑧∗2  𝑑𝑧∗ ≡
𝐿∗

0
erf (𝑧 ∗),                (5.5.1-2) 

 

where 𝐿∗ = 𝐿/(𝜎𝑧√2).   

 

Thus, since erf (Error Function) is a well-tabulated function and its inverse available via MATLAB and other 

programming languages, we have by definition, erf 𝑖𝑛𝑣(𝑝) = erf 𝑖𝑛𝑣(𝑋𝑋/100) = 𝐿∗; thus, and 

accounting for the change of variables: 

 

 𝐿𝐸_𝑋𝑋 = 𝜎𝑧√2 × 𝑒𝑟𝑓𝑖𝑛𝑣(
𝑋𝑋

100
)                    (5.5.1-3) 

 

And specifically: 

 

𝐿𝐸_𝑋𝑋 = 𝐿(𝑝)𝜎𝑧,                     (5.5.1-4) 

 

where 𝑝 = 𝑋𝑋/100 and the multiplier L(p) is listed in Table 5.5.1-1: 

 

Table 5.5.1-1: Linear Error (LE) multiplier L(p) versus probability level p 

 

 
      
The light blue entries are the standard probability levels of interest.  The violet entries are others of 

general interest.  For example, p=0.9973 is the “three-sigma” level of probability.  If the desired probability 

level is different than any of the above, simply evaluate Equation (5.5.1-3) using the desired value for XX.  

If the mean-value for error is not equal to zero, solve Equation (5.5.1-1) directly using iteration and 

numerical integration.    

 

5.5.1.1 Algorithm for Computing LE_XX 

The following are the priority-ordered methods/equations for the computation pf LE_XX: 

p=0.5 p=0.6827 p=0.90 p=0.95 p=9545 p=0.99 p=0.9973 p=0.999

L(p) 0.6745 1.0000 1.6499 1.9600 2.0000 2.5758 3.0000 3.2905

Probabilities
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(1) Baseline table look-up (mean-value zero, at specific values of p=0.5, 0.9. 0.95, 0.99, and 0.999), see 

Equation (5.5.1-4). 

(2) Erf (inverse) evaluation (mean-value zero, arbitrary probability level), see Equation (5.5.1-3). 

(3) Integral Equation (arbitrary mean-value and probability level), see Equation (5.5.1-1).    

Pseudo-code (MATLAB) for Equation (5.5.1-3) and Equation (5.5.1-1) are presented in Appendix C.1.   

5.5.1.2 Examples of LE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%, a mean error of zero, and 𝐶𝑋 ≡ 𝜎𝑧
2 = [9] meters-squared.  

Thus, baseline table interpolation is applicable and the first-ordered choice: 

𝐿𝐸_90 = 𝐿 × 𝜎𝑧 = 1.6499 × 3 = 4.95 meters. 

(2) Assume a desired probability level of 𝑝 = 0.70 (XX=70), a mean error of zero, and 𝐶𝑋 ≡ 𝜎𝑧
2 = [9] 

meters-squared.  Thus, erf (inverse) evaluation is applicable: 

𝐿𝐸_70 = 3.1092 meters.  

(3) Assume a desired probability level of 90%, a mean predictive error equal to �̅�𝑇 ≡ 𝑧̅ = [−2], and 𝐶𝑋 ≡

𝜎𝑧
2 = [9] meters-squared.  Thus, the Integral Equation is applicable:  

𝐿𝐸_90 = 5.976  meters. 

The solution corresponding to the first and second examples were computed virtually instantaneously, 

while the solution corresponding to the third example took on the order of 0.02 seconds using non-

optimized MATLAB code on a notebook computer.  The calculation error was negligible for all. 

5.5.2 Circular Error (CE) 

The following analytic formulation for CE at the XX % probability level is a straightforward application of 

the Gaussian (multi-variate) probability density function and its properties to the definition of CE provided 

in Section 5.5.  However, the orthogonal directions 𝑥 and 𝑦 are general and do not necessarily correspond 

to the horizontal plane as assumed in Section 5.5. 

 

CE_XX is defined as that circular radius 𝑅 such that: 

 

𝑝 =
1

(2π))det (𝐶𝑋)1/2 ∬𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�)  𝑑𝑥𝑑𝑦,                  (5.5.2-1) 

 

integrated over the region √𝑥2 + 𝑦2 ≤ 𝑅, and where probability 𝑝 = 𝑋𝑋/100, 2d error 휀𝑋𝑇 = [𝜖𝑥 𝜖𝑦] 

is defined as 𝑋𝑇 = [𝑥 𝑦] for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined as �̅�𝑇 = [�̅� �̅�], and 

2𝑥2 error covariance matrix about the mean defined as 𝐶𝑋.  Note that if the mean-value is not zero, the 

radius 𝑅 is still relative to the origin [0 0]𝑇, per the standard definition of CE_XX. 
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The above integral relationship can be simplified by assuming an eigenvector aligned x-y Cartesian 

coordinate system.  The latter takes advantage of the positive-definite and symmetric properties of the 

error covariance matrix.  In particular, there exists a Cartesian coordinate system aligned with the error 

covariance matrix eigenvectors such that the error covariance matrix when expressed relative to this 

system is a diagonal matrix with the eigenvalues down the diagonal.  There also exists a transformation 

matrix Φ with (unit) eigenvectors along the rows which transforms vectors in the original x-y coordinate 

system to corresponding vectors in the eigenvector aligned system.   Thus, and taking advantage of 

circular symmetry (the radius 𝑅 applies to either the original or eigenvector-aligned coordinate system), 

we have the following: 

 

Assume that Φ�̅� → �̅�,  Φ𝐶𝑋Φ𝑇 → 𝐶𝑋 = [
𝜎𝑚𝑎𝑥

2 0

0 𝜎𝑚𝑖𝑛
2 ], where the diagonals are the maximum and 

minimum eigenvalues, with 𝜎𝑚𝑎𝑥
2  assumed associated with the x-axis of the eigenvector aligned Cartesian 

coordinate system for convenience of notation.  Equation (5.5.2-1) becomes the equivalent: 

 

𝑝 =
1

(2𝜋)𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛
∬𝑒

−1/2((
𝑥−�̅�

𝜎𝑚𝑎𝑥
)
2
+(

𝑦−�̅�

𝜎𝑚𝑖𝑛
)
2

)
𝑑𝑥𝑑𝑦 ,                 (5.5.2-2) 

 

integrated over the region √𝑥2 + 𝑦2 ≤ 𝑅. 

 

Note that Equation (5.5.2-2) can be further decomposed, if so desired, as follows: 

 

𝑝 =
1

(2𝜋)𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛
∫ 𝑒−(𝑥−�̅�)2/𝜎𝑚𝑎𝑥

2𝑅

−𝑅 ∫ 𝑒−(𝑦−�̅�)2/𝜎𝑚𝑖𝑛
2+√𝑅2−𝑥2

−√𝑅2−𝑥2 𝑑𝑦𝑑𝑥.               (5.5.2-3) 

 

Either of the above Equations (5.5.2-1) or (5.5.2-2) can be solved for iteratively for the radius 𝑅, given the 

desired probability level 𝑝 = 𝑋𝑋/100.  Note that the right side of the corresponding equation for a given 

iteration is solved for numerically for the radius 𝑅, with Equation (5.5.2-2) somewhat more numerically 

stable.  Thus, we have: 

 

𝐶𝐸_𝑋𝑋 = 𝑅.                     (5.5.2-4) 

 

If the mean-value is zero and the eigenvalues are equal, the integral in Equation (5.5.2-2) can also be 

represented in terms of the random variable 𝑟𝑎𝑑𝑖𝑎𝑙 = √𝑥2 + 𝑦2 and a single integral.  The probability 

distribution of the 𝑟𝑎𝑑𝑖𝑎𝑙 random variable is the Rayleigh distribution.  If the mean-value is not equal to 

zero and the eigenvalues are equal, the probability distribution of the 𝑟𝑎𝑑𝑖𝑎𝑙 random variable is the Rice 

distribution which involves a modified Bessel function of the first kind.  However, equal eigenvalues are 

equivalent to a covariance matrix relative to the original and already eigenvector aligned coordinate 

system that is diagonal with equal variances (standard deviations).  This is a significant restriction.  

Equation (5.5.2-2) in its current form is more general and requires nothing more than a valid covariance 

matrix.  It is also the foundation for the recommended methods that follow. 
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Assuming a mean-value of zero and an additional change of variables from the eigenvector-aligned x-y 

system to a scaled eigenvector aligned x*-y* system corresponding to   𝑥/𝜎𝑚𝑎𝑥 → 𝑥∗ and 𝑦/𝜎𝑚𝑖𝑛 → 𝑦∗, 

Equation (5.5.2-2) can also be written as: 

 

𝑝 =
1

(2𝜋)
∬𝑒−1/2(𝑥∗2+𝑦∗2)𝑑𝑥∗𝑑𝑦∗                  (5.5.2-5) 

 

integrated over the region √𝑥∗2 + 𝑟2𝑦∗2 ≤ 𝑅/𝜎𝑚𝑎𝑥 , where 𝑟 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 .   

 

If we also assume that 𝜎𝑚𝑎𝑥 = 1, it follows that the value 𝑅 = 𝑅(𝑝, 𝑟), such that the above integral equals 

the desired level of probability p, is related to CE_XX as follows: 

 

𝐶𝐸_𝑋𝑋 = 𝑅(𝑝, 𝑟)𝜎𝑚𝑎𝑥,                    (5.5.2-6) 

 

where 𝜎𝑚𝑎𝑥 in Equation (5.5.2-6) is the square root of the actual maximum eigenvalue of 𝐶𝑋, and 𝑟 =

𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥.  

 

Typically, 𝑅(𝑝, 𝑟)  is pre-computed for all combination of values of 𝑟 = 0, 0.05, 0.1, . . 0.95,1.0,  

i.e., 21 values or table entries, and then interpolated appropriately. 

 

A given entry for the table is pre-computed by solving Equation (5.5.2-2) for 𝑅, with �̅� set to zero, and 

𝐶𝑋 = [
𝜎𝑚𝑎𝑥

2 0

0 𝜎𝑚𝑖𝑛
2 ] set to [

1 0
0 𝑟2].  An exception corresponds to values of 𝑟 = 0, where the appropriate 

table value corresponds to limit arguments.  Specifically, if 𝑟 = 0, the CE_XX table entry corresponds to 

LE_XX, i.e., the expected magnitude of error in the second dimension approaches zero or is a “non-entity”. 

 

Table 5.5.2-1 presents the pre-computed values of 𝑅(𝑝, 𝑟) for various probability levels.  In particular, 

columns 2-5 correspond to p=0.5, 0.9. 0.95, 0.99, and 0.999, respectively, or alternatively, to XX=50, 90, 

95, 99, and 99.9 %, respectively.  
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Table 5.5.2-1: Circular Error (CE) multiplier 𝑅(𝑝, 𝑟) versus probability level p and ratio r: 

 

For an arbitrary error covariance matrix 𝐶𝑋 with corresponding ratio 𝑟  ( 0 < 𝑟 ≤ 1 ) and 𝜎𝑚𝑎𝑥, CE_XX is 

computed as: 

 𝐶𝐸_𝑋𝑋 = 𝑅∗𝜎𝑚𝑎𝑥,                     (5.5.2-7) 

where the normalized radius 𝑅∗ is computed as the linear interpolation of 𝑅(𝑋𝑋/100, 𝑟) from the 

corresponding column of Table 5.5.2-1.   

5.5.2.1 Baseline Computation Method: Table Interpolation 

As detailed above, the baseline interpolation method to compute CE_XX assumes a mean-value of zero 

and fixed probability levels.  It is summarized as an algorithm as follows: 

(1) Compute the eigenvalues of 𝐶𝑋:  𝜎𝑚𝑎𝑥
2 , 𝜎𝑚𝑖𝑛

2 , assumed in descending order            (5.5.2.1-1) 

(2) Compute 𝜎𝑚𝑎𝑥, 𝑟 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥; there is no limit on the value of 𝑟 other than 0 < 𝑟 ≤ 1. 

(3) Based on the desired probability level XX (%) and the computed value 𝑟, perform linear  interpolation 

within the appropriate column of Table 5.5.2-1, i.e., 𝑅(𝑝 = 𝑋𝑋/100, 𝑟) of Section 5.5.2 for a normalized 

radius value 𝑅∗ 

(4) 𝐶𝐸𝑋𝑋 = 𝑅∗ 𝜎𝑚𝑎𝑥. 

p=0.5 p=0.9 p=0.95 p=0.99 p=0.999

0.00 0.6745 1.6449 1.9600 2.5758 3.2905

0.05 0.6763 1.6456 1.9606 2.5763 3.2910

0.10 0.6820 1.6479 1.9625 2.5778 3.2921

0.15 0.6916 1.6518 1.9658 2.5803 3.2940

0.20 0.7059 1.6573 1.9704 2.5838 3.2967

0.25 0.7254 1.6646 1.9765 2.5884 3.3003

0.30 0.7499 1.6738 1.9842 2.5942 3.3049

0.35 0.7779 1.6852 1.9937 2.6013 3.3104

0.40 0.8079 1.6992 2.0051 2.6099 3.3172

0.45 0.8389 1.7163 2.0190 2.6203 3.3252

0.50 0.8704 1.7371 2.0359 2.6326 3.3346

0.55 0.9021 1.7621 2.0564 2.6474 3.3459

0.60 0.9337 1.7915 2.0813 2.6653 3.3595

0.65 0.9651 1.8251 2.1111 2.6875 3.3759

0.70 0.9962 1.8625 2.1460 2.7151 3.3965

0.75 1.0271 1.9034 2.1858 2.7492 3.4227

0.80 1.0577 1.9472 2.2303 2.7907 3.4570

0.85 1.0880 1.9936 2.2791 2.8401 3.5018

0.90 1.1181 2.0424 2.3318 2.8974 3.5594

0.95 1.1479 2.0932 2.3881 2.9625 3.6310

1.00 1.1774 2.1460 2.4478 3.0349 3.7169

Ratio

r

Probabilities
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5.5.2.2 Monte Carlo Matrix Square Root Method 

The following approach to the computation of CE_XX is applicable to arbitrary mean-values and arbitrary 

probability levels, is computationally accurate and reasonably fast:    

(1) Compute 1E6 independent samples of the 2x1 horizontal error: 𝑠𝑖 = �̅� + 𝐶𝑋
1/2

𝑛𝑖 ,                 (5.5.2.2-1) 

 𝑖 = 1, . . ,1𝐸6,  

where �̅� and 𝐶𝑋 are the 2𝑥1 mean and the 2𝑥2 error covariance about the mean relative to the original 

(non-eigenvector aligned) coordinate system, 𝑛𝑖 is a two-element vector with each element the 

realization of an  independent Gaussian or normal  𝑁(0,1) random variable, and where the superscript 

“1/2”  indicates principal matrix square root.  �̅� and 𝑛𝑖 are 2x1 vectors, and 𝐶𝑋
1/2

 is a 2𝑥2 matrix.  Also, 𝑠𝑖 

is a Gaussian distributed random vector with mean �̅� since it is a linear function of the mean-zero random 

vector 𝑛𝑖 and added to �̅�. 

 (2) Order the magnitudes of the error samples 𝑠𝑖 from smallest to largest, and designate 𝑅𝐸𝑋𝑋 the XX_th 

percent largest, and 𝑅𝐸𝑋𝑋
∗  the next largest magnitude.  (Simply use the “sort” function for ordering if using 

MATLAB). 

(3) CE_XX=(𝑅𝐸𝑋𝑋 + 𝑅𝐸𝑋𝑋
∗ )/2 ). 

Note that the symmetric 𝐶𝑋
1/2

 is computed once prior to generating the independent samples, and the 

samples 𝐶𝑋
1/2

𝑛𝑖 are consistent with the error covariance matrix about the mean, i.e.,   

𝐸{(𝑠𝑖 − �̅�)(𝑠𝑖 − �̅�)𝑇}=𝐸{ 𝐶𝑋
1/2

𝑛𝑖(𝐶𝑋
1/2

𝑛𝑖 )
𝑇}=𝐶𝑋

1/2
𝐸{𝑛𝑖 𝑛𝑖

𝑇}𝐶𝑋
1/2

=𝐶𝑋
1/2

 𝐼2𝑥2 𝐶𝑋
1/2

=𝐶𝑋,                 (5.5.2.2-2) 

where 𝐸{ } is the expected value operator. 

Alternatively, the above can be performed in an equivalent manner relative to the eigenvector-aligned 

system by computing  samples of horizontal error as 𝑠𝑖 = (Φ�̅� + 𝐷 ∙ 𝑛𝑖), where “ ∙ “ is the vector dot 

product, 𝐷 a 2x1 vector containing the square-root of the eigenvalues, and Φ the 2𝑥2 transformation 

matrix from the original Cartesian coordinate system to the eigenvector-aligned coordinate system.  The 

speed varies little between the two approaches. 

Due to its use of 1E6 random samples, the computational accuracy of the above algorithm is directly 

associated with statistical significance, and resultant computational error is expected to be on the order 

of 1/sqrt(1E6), or a 0.1% relative error.  This assumes reasonable and practical probability values that are 

within the interval [0.1, 0.999], and that the square-root of the smallest to the largest eigenvalue 𝑟 >

0.0001, i.e., applicable to virtually any valid error covariance matrix of interest. 

As a reminder, the above method is available via the MATLAB pseudo-code presented in Appendix C.1.   

In addition, this method is also detailed in TGD 2e (Monte-Carlo simulation).  

5.5.2.3 Examples of Monte Carlo Matrix Square Root Method 

The following are examples of the application of Equation/Algorithm (5.5.2.2-1).   
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The first example assumes a mean-value of zero and a 2𝑥2 diagonal error covariance with 100 meters-

squared in each diagonal.  The equation was applied twice: once for CE_50 and once for CE_95.   

The results are plotted in Figure 5.5.2.3-1, including the first 10,000 of the 1,000,000 independent samples 

used in the calculation of CE_50 for context.  (The CE_50 circle in the figure was computed using all 

1,000,000 independent samples.  The CE_95 circle was computed similarly, but used a different set of 

1,000,000 independent samples for convenience. Both circles are centered at zero by definition.)   

 

Figure 5.5.2.3-1: Example 1 - CE_50 circle (red), CE_95  

circle (black), and 10,000 of 1,000,000 random samples 

The next example assumes a mean-value �̅�𝑇 = [10 5] meters, and an error covariance matrix about the 

mean 𝐶𝑋 = [102 0.75 × 10 × 12
. 122 ] meters-squared.  The equation was applied twice: once for CE_50 

and once for CE_95.   

The results are plotted in Figure 5.5.2.3-2, including the first 10,000 of the 1,000,000 independent samples 

used in the calculation of CE_50 for context.  (The CE_50 circle in the figure was computed using all 

1,000,000 independent samples.  The CE_95 circle was computed similarly, but used a different set of 

1,000,000 independent samples for convenience. Both circles are centered at zero by definition.)   
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Figure 5.5.2.3-2: Example 2 - CE_50 circle (red), CE_95  

circle (black), and 10,000 of 1,000,000 random samples 

Note that sample results (blue points) are not centered about zero and in a non-symmetric fashion due to 

a mean-value with different non-zero components in the x and y directions.  Also note that the actual 

statistical significance is greater than that implied by the figure, which displays only 1/100_th the actual 

number of samples used in the calculation of CE_50.  

5.5.2.4 CE_XX Computation Method Selection  

Pseudo-code (MATLAB) for the computation of CE_XX is presented in Appendix C.1 corresponding to and 

selectable for the following operational, priority-ordered methods/equations: 

(1) Baseline table interpolation (mean-value zero, p=0.5, 0.9. 0.95, 0.99, or 0.999), see Equation (5.5.2.1-

1). 

(2) Monte Carlo Matrix Square Root (arbitrary mean-value and probability level), see Equation (5.5.2.2-1). 

(3) Integral Equation (mean-value zero, arbitrary probability level), see Equation (5.5.2-2). 

Operationally, Method (1) is the preferred method for the fixed levels of probability previously specified 

and when the mean-value of predictive error is zero, which is almost always the case.  It has very small 

calculation error and is much faster than all other methods.  On the other hand, Method (2) is applicable 

to all situations and has small calculation error. 
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Operationally, Method (2) is also preferred over Method (3) due to no extreme variations in calculation 

time, although the latter has less calculation error.  Method (3) is the preferred method for the generation 

of new interpolation tables corresponding to probability levels not already fixed.   

Note that Method (3)’s Equation (5.5.2-2) can also be used when the mean-value is not zero, but it does 

not converge as fast as when the mean-value equals zero, or not at all a small percentage of the time; 

hence, it was left out of the above list, although pseudo-code is also available in Appendix C.  Further note 

that in order to improve convergence and throughput corresponding to Equation (5.5.2-2), the square-

root of the smallest to largest eigenvalue ratio is assumed 𝑟 ≥ 0.02 if the mean-value is zero, otherwise 

𝑟 ≥ 0.05. 

Table 5.5.2.6-1 of Section 5.5.2.6 presents a performance summary for all methods. 

5.5.2.5 Examples of CE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%,            

a mean error of zero, and 𝐶𝑋 = [
4 2
2 3

] meters-squared.  Thus, baseline table interpolation (Equation 

(5.4.2-6)) is applicable per the ordered priorities of Section 5.4.2.4 and is the first choice: 

Eigenvalues equal 5.562 and 1.438 meters-squared       

𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 = 2.36 meters, 𝑟 = .509 

𝑅∗ = 1.74 (via linear interpolation: 
0.041

0.05
1.7371 +

0.009

0.05
1.7621 = 1.7416) 

𝐶𝐸_90 = 𝑅∗𝜎𝑚𝑎𝑥 = 4.11 meters. 

(2) Assume a desired probability level of 90%,            

a mean-value �̅�𝑇 = [1 −3] , and 𝐶𝑋 = [
4 2
2 3

] meters-squared.  Thus, since the mean-value is not zero, 

the Monte-Carlo Matrix Square Root method (Equation (5.5.2.2-1)) is applicable: 

𝐶𝐸_90 = 5.69 meters. 

(3) Assume a desired probability level of 70% and the smallest possible calculation error,    

a mean error of zero, and 𝐶𝑋 = [
4 2
2 3

] meters-squared.  Thus, since p=0.7 is not one of the fixed 

probability levels previously specified, the Integral Equation with a mean-value of zero (Equation (5.5.2-

2)) is applicable: 

Eigenvalues equal 5.562 and 1.438 meters-squared       

𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 = 2.36 meters, 𝑟 = .509 
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𝐶𝐸_70 = 2.81 meters. 

5.5.2.6 CE_XX Computation Method Performance Summary 

A detailed performance evaluation/comparison was made for all the above CE_XX computation methods.  

Performance corresponds to both calculation error and throughput, and corresponds to non-optimized 

MATLAB code on a notebook computer.  Performance details are presented in Appendix C.3 and 

summarized below in Table 5.5.2.6-1: 

Table 5.5.2.6-1:  Performance Summary for CE_XX Calculations 

 

Thus, for example, given that the mean-value for the magnitude of relative error for the Monte Carlo 

covariance matrix square root approach is 0.05% per the above table, if the true CE_XX equals 5 meters, 

we would expect the computed value to be the correct value 5.0 +/- 0.0025 meters. Alternatively, given 

that the 99th percentile computation error is 0.35% per the above table, there is an approximate 99% 

probability that the computed value will be within the interval 5.0 +/- 0.0175 meters.  

Finally, as a reminder, the above table is applicable to CE_XX for arbitrary levels of confidence (XX).  In 

addition, CE_XX can actually correspond to rel_CE_XX if the underlying 2𝑥2 error covariance matrix 

corresponds to relative error instead of absolute error – it does not matter to the computation method. 

Note: as discussed earlier, the Integral Equation approach for an arbitrary probability level and for an 

arbitrary mean-value can have convergence problems for a small percentage of cases (approximately 0.1% 

of the cases or 1:1000).  However, they are almost always detectable as discussed in Appendix C.3.  Also, 

as indicated by the presence of an asterisk in the corresponding “max absolute relative error” cell entry 

in Table 5.5.2.6-1, these values can increase up to a value of 40% when convergence is not achieved. 

5.5.3 Spherical Error (SE) 

The definition and derivations/computation for SE is similar to that described above for CE, but extended 
from two dimensions to three dimensions.   
 
In particular, SE_XX is defined as that spherical radius R such that: 
 

𝑝 =
1

(2𝜋)3/2det (𝐶𝑋)1/2 ∭𝑒−1/2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�)  𝑑𝑥𝑑𝑦𝑑𝑧,                  (5.5.3-1) 

 

integrated over the region √𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑅, and where probability 𝑝 = 𝑋𝑋/100, 3d error 휀𝑋𝑇 =
[𝜖𝑥 𝜖𝑦 𝜖𝑧] is defined as 𝑋𝑇 = [𝑥 𝑦 𝑧]  for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined as 
�̅� = [�̅� �̅� 𝑧̅], and 3 × 3 error covariance matrix 𝐶𝑋 about the mean.  Note that if the mean-value is not 
zero, the radius 𝑅 is still relative to the origin [0 0 0]𝑇, per the standard definition of SE_XX. 

Method ratio r > % conv

zero arbitrary fixed arbitrary mean max mean 99th perc max

Table Interp yes no yes no 0 0.0001 0.0002 0.01 0.04 0.1 n/a

M.C. Cov Sqrt yes yes yes yes 0.0001 0.09 0.15 0.05 0.35 0.6 n/a

Integral Eqn yes no yes yes 0.02 0.08 1.3 0.005 0.02 0.09 100

Integral Eqn no yes yes yes 0.05 0.1 1.5 0.005 0.02 0.09* 99.9

CE_XX

mean-value probabilities execution time (s) |rel error| (%)
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If the x-y-z coordinate system is assumed eigenvector aligned and the mean-value transformed to that 

system, we also have the alternate and equivalent formulation: 

 

𝑝 =
1

(2𝜋)3/2𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑑𝜎𝑚𝑖𝑛
∭𝑒

−1/2((
𝑥−�̅�

𝜎𝑚𝑎𝑥
)
2
+(

𝑦−�̅�

𝜎𝑚𝑖𝑑
)
2

+(
𝑧−�̅�

𝜎𝑚𝑖𝑛
)
2

)
𝑑𝑥𝑑𝑦𝑑𝑧  ,                (5.5.3-2) 

 

integrated over the region √𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑅, where the eigenvalues 𝜎𝑚𝑎𝑥
2 , 𝜎𝑚𝑖𝑑

2 , and 𝜎𝑚𝑖𝑛
2  (assumed 

associated with coordinates x, y, and z, respectively, for notational convenience) are the elements of the 

diagonal error covariance matrix  𝐶𝑋 expressed in the eigenvector aligned system. 

 

Either of the above equations (5.5.3-1) or (5.5.3-2) can be solved for iteratively for 𝑅, given the desired 

probability level 𝑝 = 𝑋𝑋/100.  Note that the right side of the corresponding equation for a given iteration 

is solved for numerically.  Thus, we have: 

 

𝑆𝐸_𝑋𝑋 = 𝑅.                     (5.5.3-3) 

 

Furthermore, assuming a mean-value of zero and an additional change of variables from the eigenvector-

aligned x-y-z system to a scaled eigenvector aligned x*-y*-z* system corresponding to   𝑥/𝜎𝑚𝑎𝑥 → 𝑥∗, 

𝑦/𝜎𝑚𝑖𝑑 → 𝑦∗, and 𝑧/𝜎𝑚𝑖𝑛 → 𝑧∗, Equation (5.5.3-2) can also be written as: 

 

 

𝑝 =
1

(2𝜋)3/2 ∭𝑒−1/2(𝑥∗2+𝑦∗2+𝑧∗2) 𝑑𝑥𝑑𝑦𝑑𝑧 ,                  (5.5.3-4) 

integrated over the region √𝑥∗2 + 𝑟1
2𝑦∗2 + 𝑟2

2𝑧∗2 ≤ 𝑅/𝜎𝑚𝑎𝑥 , where 𝑟1 = 𝜎𝑚𝑖𝑑/𝜎𝑚𝑎𝑥 and 𝑟2 =

𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 .   

 

If we also assume that 𝜎𝑚𝑎𝑥 = 1, it follows that the value 𝑅 = 𝑅(𝑝, 𝑟1, 𝑟2), such that the above integral 

equals the desired level of probability p, is related to SE_XX as follows: 

 

𝑆𝐸_𝑋𝑋 = 𝑅(𝑝, 𝑟1, 𝑟2)𝜎𝑚𝑎𝑥,                    (5.5.3-5) 

 

where 𝜎𝑚𝑎𝑥 is the square root of the maximum eigenvalue of 𝐶𝑋, 𝑟1 = 𝜎𝑒𝑖𝑔_𝑚𝑖𝑑/𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 , and 𝑟2 =

𝜎𝑒𝑖𝑔_𝑚𝑖𝑛/𝜎𝑒𝑖𝑔_𝑚𝑎𝑥.  

 

Typically 𝑅(𝑝, 𝑟1, 𝑟2)  is pre-computed for all combination of values of 𝑟1 = 0, 0.05, 0.1, . . 0.95,1.0 and  

𝑟2 = 0, 0.05, 0.1, . . 0.95,1.0, i.e., 21x21=441 values or table entries, and then interpolated appropriately. 
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A given entry for the table is precomputed by, setting �̅� = 0 and 𝐶𝑋 = [

𝜎𝑚𝑎𝑥
2 0 0

0 𝜎𝑚𝑖𝑑
2 0

0 0 𝜎𝑚𝑖𝑛
2

] to  

[

1 0 0
0 𝑟1

2 0

0 0 𝑟2
2
] and solving Equation (5.5.3-2) for 𝑅.  An exception corresponds to values of 𝑟1 = 0 or 𝑟2 =

0, where appropriate table values correspond to limiting arguments.  In particular, if 𝑟2 = 0, SE_XX table 

entries correspond to CE_XX table entries, i.e., the expected magnitude of error in the third dimension 

approaches zero or is a “non-entity”. 

 

Tables 5.5.3-1 and 5.5.3-2 are precomputed tables of 𝑅(𝑝 = 0.5, 𝑟1, 𝑟2), 𝑅(𝑝 = 0.9, 𝑟1, 𝑟2),  𝑅(𝑝 =

0.95, 𝑟1, 𝑟2),   𝑅(𝑝 = 0.99, 𝑟1, 𝑟2), and 𝑅(𝑝 = 0.999, 𝑟1, 𝑟2).  All table entries are presented although each 

table is symmetric. 

 

Table 5.5.3-1: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.5, 𝑟1, 𝑟2) versus ratios r1 and r2 

 

 
 
  

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00 0.6745 0.6763 0.6820 0.6916 0.7059 0.7254 0.7499 0.7779 0.8079 0.8389 0.8704 0.9021 0.9337 0.9651 0.9962 1.0271 1.0577 1.0880 1.1181 1.1479 1.1774

0.05 0.6763 0.6782 0.6838 0.6934 0.7076 0.7271 0.7516 0.7795 0.8094 0.8404 0.8719 0.9035 0.9350 0.9664 0.9975 1.0283 1.0589 1.0891 1.1192 1.1489 1.1784

0.10 0.6820 0.6838 0.6894 0.6989 0.7130 0.7324 0.7567 0.7844 0.8141 0.8449 0.8762 0.9077 0.9390 0.9703 1.0013 1.0320 1.0625 1.0926 1.1225 1.1522 1.1817

0.15 0.6916 0.6934 0.6989 0.7084 0.7223 0.7414 0.7654 0.7927 0.8221 0.8526 0.8836 0.9147 0.9459 0.9768 1.0077 1.0381 1.0684 1.0984 1.1282 1.1578 1.1870

0.20 0.7059 0.7076 0.7130 0.7223 0.7359 0.7546 0.7781 0.8048 0.8336 0.8636 0.8941 0.9248 0.9556 0.9862 1.0167 1.0469 1.0769 1.1067 1.1362 1.1655 1.1947

0.25 0.7254 0.7271 0.7324 0.7414 0.7546 0.7727 0.7952 0.8211 0.8491 0.8783 0.9081 0.9382 0.9684 0.9986 1.0286 1.0584 1.0881 1.1174 1.1466 1.1756 1.2045

0.30 0.7499 0.7516 0.7567 0.7654 0.7781 0.7952 0.8167 0.8414 0.8684 0.8966 0.9256 0.9549 0.9844 1.0140 1.0434 1.0728 1.1019 1.1309 1.1597 1.1883 1.2168

0.35 0.7779 0.7795 0.7844 0.7927 0.8048 0.8211 0.8414 0.8651 0.8909 0.9181 0.9462 0.9748 1.0035 1.0324 1.0612 1.0899 1.1185 1.1470 1.1753 1.2035 1.2315

0.40 0.8079 0.8094 0.8141 0.8221 0.8336 0.8491 0.8684 0.8909 0.9157 0.9420 0.9692 0.9970 1.0251 1.0533 1.0814 1.1096 1.1376 1.1656 1.1934 1.2211 1.2488

0.45 0.8389 0.8404 0.8449 0.8526 0.8636 0.8783 0.8966 0.9181 0.9420 0.9675 0.9939 1.0210 1.0484 1.0760 1.1036 1.1313 1.1588 1.1863 1.2137 1.2409 1.2681

0.50 0.8704 0.8719 0.8762 0.8836 0.8941 0.9081 0.9256 0.9462 0.9692 0.9939 1.0197 1.0462 1.0730 1.1002 1.1273 1.1545 1.1816 1.2086 1.2356 1.2625 1.2893

0.55 0.9021 0.9035 0.9077 0.9147 0.9248 0.9382 0.9549 0.9748 0.9970 1.0210 1.0462 1.0722 1.0985 1.1251 1.1519 1.1788 1.2055 1.2322 1.2589 1.2854 1.3119

0.60 0.9337 0.9350 0.9390 0.9459 0.9556 0.9684 0.9844 1.0035 1.0251 1.0484 1.0730 1.0985 1.1245 1.1508 1.1772 1.2037 1.2302 1.2567 1.2830 1.3093 1.3355

0.65 0.9651 0.9664 0.9703 0.9768 0.9862 0.9986 1.0140 1.0324 1.0533 1.0760 1.1002 1.1251 1.1508 1.1767 1.2029 1.2291 1.2554 1.2817 1.3078 1.3339 1.3599

0.70 0.9962 0.9975 1.0013 1.0077 1.0167 1.0286 1.0434 1.0612 1.0814 1.1036 1.1273 1.1519 1.1772 1.2029 1.2288 1.2549 1.2810 1.3070 1.3330 1.3590 1.3848

0.75 1.0271 1.0283 1.0320 1.0381 1.0469 1.0584 1.0728 1.0899 1.1096 1.1313 1.1545 1.1788 1.2037 1.2291 1.2549 1.2807 1.3067 1.3325 1.3585 1.3843 1.4101

0.80 1.0577 1.0589 1.0625 1.0684 1.0769 1.0881 1.1019 1.1185 1.1376 1.1588 1.1816 1.2055 1.2302 1.2554 1.2810 1.3067 1.3324 1.3582 1.3840 1.4098 1.4355

0.85 1.0880 1.0891 1.0926 1.0984 1.1067 1.1174 1.1309 1.1470 1.1656 1.1863 1.2086 1.2322 1.2567 1.2817 1.3070 1.3325 1.3582 1.3840 1.4098 1.4356 1.4611

0.90 1.1181 1.1192 1.1225 1.1282 1.1362 1.1466 1.1597 1.1753 1.1934 1.2137 1.2356 1.2589 1.2830 1.3078 1.3330 1.3585 1.3840 1.4098 1.4355 1.4612 1.4869

0.95 1.1479 1.1489 1.1522 1.1578 1.1655 1.1756 1.1883 1.2035 1.2211 1.2409 1.2625 1.2854 1.3093 1.3339 1.3590 1.3843 1.4098 1.4356 1.4612 1.4869 1.5125

1.00 1.1774 1.1784 1.1817 1.1870 1.1947 1.2045 1.2168 1.2315 1.2488 1.2681 1.2893 1.3119 1.3355 1.3599 1.3848 1.4101 1.4355 1.4611 1.4869 1.5125 1.5382

r1

r2
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Table 5.5.3-2: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.9, 𝑟1, 𝑟2) versus ratios r1 and r2 

 

 
 
Tables 5.5.3-3 – 5.5.3-5 were omitted to save space.  All five tables are in Appendix C.2, as well as in a 

format suitable for copying, assuming this document is a suitable digital file (e.g., word document). 

5.5.3.1 Baseline Computation Method: Table Interpolation 

Thus, the algorithm for computation of SE_XX , given the usual assumption of a mean error equal to zero, 

and corresponding to a (full) 3x3 error covariance matrix 𝐶𝑋 expressed relative to an arbitrary Cartesian 

coordinate system is as follows: 

(1) Compute the eigenvalues of 𝐶𝑋:  𝜎𝑒𝑖𝑔_𝑚𝑎𝑥
2 , 𝜎𝑒𝑖𝑔_𝑚𝑖𝑑

2 , 𝜎𝑒𝑖𝑔_𝑚𝑖𝑛
2 ,            (5.5.3.1-1) 

assumed in descending order    

(2) Compute 𝜎𝑒𝑖𝑔_𝑚𝑎𝑥, 𝑟1 = 𝜎𝑒𝑖𝑔_𝑚𝑖𝑑/𝜎𝑒𝑖𝑔_𝑚𝑎𝑥, 𝑟2 = 𝜎𝑒𝑖𝑔_𝑚𝑖𝑛/𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 

(3) Based on the desired probability level XX (%) and the computed values 𝑟1, 𝑟2, perform bilinear  

interpolation of the appropriate table 𝑅(𝑝 = 𝑋𝑋/100, 𝑟1, 𝑟2) of Section 5.5.3 for a normalized radius 

value 𝑅∗ 

(4) 𝑆𝐸_𝑋𝑋 = 𝑅∗𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 

5.5.3.2 Alternate Computation Method: Monte Carlo Matrix Square Root 

The following alternate approach to the computation of SE_XX is applicable to arbitrary mean-values and 

arbitrary probability levels, is computationally accurate and reasonably fast:     

(1) Compute 1E6 independent samples of 3d error: 𝑠𝑖 = �̅� + 𝐶𝑋
1/2

𝑛𝑖 , 𝑖 = 1, . . ,1𝐸6,          (5.5.3.2-1) 

where �̅� and 𝐶𝑋 are the 3x1 mean and the 3x3 error covariance about the mean relative to the original 

(non-eigenvector aligned) coordinate system, 𝑛𝑖 is a three-element vector with each element the 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00 1.6449 1.6456 1.6479 1.6518 1.6573 1.6646 1.6738 1.6852 1.6992 1.7163 1.7371 1.7621 1.7915 1.8251 1.8625 1.9034 1.9472 1.9936 2.0424 2.0932 2.1460

0.05 1.6456 1.6464 1.6487 1.6525 1.6581 1.6654 1.6745 1.6860 1.6999 1.7170 1.7378 1.7628 1.7922 1.8258 1.8632 1.9040 1.9478 1.9942 2.0429 2.0938 2.1466

0.10 1.6479 1.6487 1.6509 1.6548 1.6604 1.6676 1.6769 1.6882 1.7021 1.7192 1.7400 1.7650 1.7944 1.8279 1.8652 1.9060 1.9497 1.9961 2.0448 2.0956 2.1483

0.15 1.6518 1.6525 1.6548 1.6587 1.6642 1.6714 1.6806 1.6920 1.7059 1.7229 1.7436 1.7686 1.7979 1.8314 1.8687 1.9094 1.9530 1.9993 2.0479 2.0987 2.1512

0.20 1.6573 1.6581 1.6604 1.6642 1.6697 1.6769 1.6861 1.6974 1.7113 1.7282 1.7489 1.7738 1.8030 1.8364 1.8735 1.9141 1.9576 2.0039 2.0523 2.1029 2.1555

0.25 1.6646 1.6654 1.6676 1.6714 1.6769 1.6841 1.6932 1.7045 1.7183 1.7352 1.7558 1.7806 1.8097 1.8429 1.8799 1.9204 1.9638 2.0098 2.0581 2.1086 2.1610

0.30 1.6738 1.6745 1.6769 1.6806 1.6861 1.6932 1.7023 1.7135 1.7273 1.7441 1.7646 1.7892 1.8182 1.8513 1.8881 1.9283 1.9715 2.0173 2.0654 2.1156 2.1678

0.35 1.6852 1.6860 1.6882 1.6920 1.6974 1.7045 1.7135 1.7247 1.7383 1.7550 1.7755 1.7999 1.8286 1.8614 1.8981 1.9380 1.9809 2.0265 2.0743 2.1243 2.1762

0.40 1.6992 1.6999 1.7021 1.7059 1.7113 1.7183 1.7273 1.7383 1.7519 1.7685 1.7887 1.8130 1.8414 1.8740 1.9102 1.9498 1.9923 2.0375 2.0850 2.1347 2.1862

0.45 1.7163 1.7170 1.7192 1.7229 1.7282 1.7352 1.7441 1.7550 1.7685 1.7849 1.8049 1.8289 1.8569 1.8890 1.9248 1.9639 2.0060 2.0506 2.0977 2.1469 2.1981

0.50 1.7371 1.7378 1.7400 1.7436 1.7489 1.7558 1.7646 1.7755 1.7887 1.8049 1.8245 1.8481 1.8757 1.9071 1.9422 1.9807 2.0221 2.0663 2.1127 2.1614 2.2120

0.55 1.7621 1.7628 1.7650 1.7686 1.7738 1.7806 1.7892 1.7999 1.8130 1.8289 1.8481 1.8710 1.8979 1.9287 1.9630 2.0007 2.0413 2.0847 2.1304 2.1783 2.2282

0.60 1.7915 1.7922 1.7944 1.7979 1.8030 1.8097 1.8182 1.8286 1.8414 1.8569 1.8757 1.8979 1.9240 1.9539 1.9873 2.0240 2.0637 2.1061 2.1510 2.1980 2.2472

0.65 1.8251 1.8258 1.8279 1.8314 1.8364 1.8429 1.8513 1.8614 1.8740 1.8890 1.9071 1.9287 1.9539 1.9827 2.0151 2.0507 2.0894 2.1308 2.1746 2.2207 2.2689

0.70 1.8625 1.8632 1.8652 1.8687 1.8735 1.8799 1.8881 1.8981 1.9102 1.9248 1.9422 1.9630 1.9873 2.0151 2.0464 2.0809 2.1185 2.1587 2.2015 2.2464 2.2936

0.75 1.9034 1.9040 1.9060 1.9094 1.9141 1.9204 1.9283 1.9380 1.9498 1.9639 1.9807 2.0007 2.0240 2.0507 2.0809 2.1143 2.1506 2.1898 2.2314 2.2753 2.3214

0.80 1.9472 1.9478 1.9497 1.9530 1.9576 1.9638 1.9715 1.9809 1.9923 2.0060 2.0221 2.0413 2.0637 2.0894 2.1185 2.1506 2.1858 2.2237 2.2642 2.3070 2.3520

0.85 1.9936 1.9942 1.9961 1.9993 2.0039 2.0098 2.0173 2.0265 2.0375 2.0506 2.0663 2.0847 2.1061 2.1308 2.1587 2.1898 2.2237 2.2605 2.2998 2.3415 2.3854

0.90 2.0424 2.0429 2.0448 2.0479 2.0523 2.0581 2.0654 2.0743 2.0850 2.0977 2.1127 2.1304 2.1510 2.1746 2.2015 2.2314 2.2642 2.2998 2.3380 2.3786 2.4213

0.95 2.0932 2.0938 2.0956 2.0987 2.1029 2.1086 2.1156 2.1243 2.1347 2.1469 2.1614 2.1783 2.1980 2.2207 2.2464 2.2753 2.3070 2.3415 2.3786 2.4180 2.4597

1.00 2.1460 2.1466 2.1483 2.1512 2.1555 2.1610 2.1678 2.1762 2.1862 2.1981 2.2120 2.2282 2.2472 2.2689 2.2936 2.3214 2.3520 2.3854 2.4213 2.4597 2.5003

r1

r2
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realization of an  independent 𝑁(0,1) random variable, and where the superscript “1/2”  indicates 

principal matrix square root.  �̅� and 𝑛𝑖 are 3𝑥1 vectors, and 𝐶𝑋
1/2

 is a 3𝑥3 matrix. 

(2) Order the magnitudes of the 3d error samples from smallest to largest, and designate 𝑅𝐸𝑋𝑋 the XX_th 

percent largest, and 𝑅𝐸𝑋𝑋
∗  the next largest magnitude. 

(3) SE_XX=(𝑅𝐸𝑋𝑋 + 𝑅𝐸𝑋𝑋
∗ )/2 ). 

Note that the symmetric 𝐶𝑋
1/2

 is computed once prior to generating the independent samples, and the 

samples 𝐶𝑋
1/2

𝑛𝑖 are consistent with the error covariance matrix about the mean, i.e.,   

𝐸{(𝑠𝑖 − �̅�)(𝑠𝑖 − �̅�)𝑇}=𝐸{ 𝐶𝑋
1/2

𝑛𝑖(𝐶𝑋
1/2

𝑛𝑖 )
𝑇}=𝐶𝑋

1/2
𝐸{𝑛𝑖 𝑛𝑖

𝑇}𝐶𝑋
1/2

=𝐶𝑋
1/2

 𝐼3𝑥3 𝐶𝑋
1/2

=𝐶𝑋, 

where 𝐸{ } is the expected value operator. 

Alternatively, the above can be performed in an equivalent manner relative to the eigenvector-aligned 

system by computing samples as 𝑠𝑖 = (Φ�̅� + 𝐷 ∙ 𝑛𝑖), where “ ∙ “ is the vector dot product , 𝐷 a 3𝑥1 vector 

containing the square-root of the eigenvalues, and Φ the 3𝑥3 transformation matrix from the original 

Cartesian coordinate system to the eigenvector-aligned coordinate system.  The speed varies little 

between the two approaches. 

Due to its use of 1E6 random samples, the computational accuracy of the above algorithm is directly 

associated with statistical significance, and resultant computational error is expected to be on the order 

of 1/sqrt(1E6), or a 0.1% relative error.  This assumes reasonable and practical probability values that are 

within the interval [0.1, 0.999], and that the square-root of the smallest to the largest eigenvalue 𝑟 >

0.0001, i.e., applicable to virtually any valid error covariance matrix.     

5.5.3.3 SE_XX Computation Method Selection 

Pseudo-code (MATLAB) for the computation of SE_XX is presented in Appendix C.1 corresponding to the 

following operationally, priority-ordered methods/equations: 

(1) Baseline table interpolation (mean-value zero, p=0.5, 0.9. 0.95, 0.99, or 0.999), see Equation 

(5.5.3.1-1). 

(2) Monte Carlo Matrix Square Root (arbitrary mean-value and probability level), see Equation 

(5.5.3.2-1). 

(3) Integral Equation (mean-value zero, arbitrary probability level), see Equation (5.5.3-2). 

Operationally, Method (1) is the preferred method for the fixed levels of probability previously specified 

and when the mean-value of predictive error zero, which is almost always the case.  It has very small 

calculation error and is much faster than all other methods.  On the other hand, Method (2) is applicable 

to all situations and has small calculation error. 

Operationally, Method (2) is also preferred over Method (3) due to the latter’s typically large execution 

time, although Method (3) has less calculation error.  Method (3) is the preferred method for the 

generation of new interpolation tables corresponding to probability levels not already fixed.   
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Note that Method (3)’s Equation (5.5.3-2) can also be used when the mean-value is not zero, but it does 

not converge as fast as when the mean-value equals zero, or not at all a small percentage of the time; 

hence, it was left out of the above list, although pseudo-code is also available in Appendix C.1.  The  

Table 5.5.3.5-1 of Section 5.5.3.5 presents a performance summary for all methods 

5.5.3.4 Examples of SE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%, a mean error of zero, and 𝐶𝑋 = [
4 −5.4 6

−5.4 9 −9
6 −9 25

] meters-

squared.  Thus, baseline table interpolation (Equation (5.4.3.1-1)) is applicable and is the first choice: 

Eigenvalues equal 31.2, 6.22, and 0.55 meters-squared       

𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 = 5.59 meters, 𝑟1 = 0.446, 𝑟2 = 0.132 

𝑅∗ = 1.72 ( via bilinear linear interpolation: 
0.018

0.05
(
0.004

0.05
1.7021 +

0.046

0.05
1.7192) + 

 
0.032

0.05
(
0.004

0.05
1.7059 +

0.046

0.05
1.7229) = 1.7202 ) 

𝑆𝐸_90 = 𝑅∗𝜎𝑒𝑖𝑔_𝑚𝑎𝑥 = 9.61 meters. 

(2) Assume a desired probability level of 90%, a mean-value �̅�𝑇 = [1 0 −1], and 𝐶𝑋 =

[
4 −5.4 6

−5.4 9 −9
6 −9 25

] meters-squared. Thus, since the mean-value is not zero, the Monte-Carlo Matrix 

Square Root method (Equation (5.5.3.2-1)) is applicable: 

𝑆𝐸_90 = 9.76 meters. 

(3) Assume a desired probability level of 70%, and the lowest possible calculation error, 

 a mean error of zero, and 𝐶𝑋 = [
4 −5.4 6

−5.4 9 −9
6 −9 25

] meters-squared.  Thus, since p=0.7 is not one of the 

fixed probability levels previously specified, the Integral Equation with a mean-value of zero (Equation 

(5.5.3-2)) is applicable: 

𝑆𝐸_70 = 6.47 meters. 

5.5.3.5 SE_XX Computation Method Performance Summary 

A detailed performance evaluation/comparison was made for all the above SE_XX computation methods.  

Performance corresponds to both calculation error and throughput, and corresponds to non-optimized 

MATLAB code on a notebook computer.  Performance details are presented in Appendix C.3 and 

summarized below in Table 5.5.3.5-1: 
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Table 5.5.3.5-1:  Performance Summary for SE_XX Calculations 

 

Thus, for example, given that the maximum for the magnitude of relative error for the Monte Carlo 

covariance matrix square root approach is 0.4% per the above table, if the true CE_XX equals 5 meters, 

we would expect the computed value to have a value within 5.0 +/- 0.02 meters virtually all of the time.   

Note: the solution times for the Integral Equation approach are very large due to integration/searches in 

3d space.  In addition, as discussed earlier, the Integral Equation approach for an arbitrary probability level 

and for an arbitrary mean-value can have convergence problems for some cases (approximately 0.2% of 

the cases or 1:500).  However, they are almost always detectable as discussed in Appendix C.3.  Also, as 

indicated by the presence of an asterisk in the corresponding “max absolute relative error” cell entry, 

these values can increase up to a value of 40% when convergence is not achieved. 

5.6 Multi-state vector Error Covariance Matrix Definition 
In many situations, it is more convenient and provides more insight to generalize the error covariance 

matrix relative to a single state vector to a multi-state vector.  For example, a multi-state vector consisting 

of a collection of individual state vectors, each corresponding to the same stochastic process but at 

different times.  Or perhaps, corresponding to a collection of individual state vectors, all solved for 

(estimated) simultaneously in one large state vector as part of a batch estimation process.  The general 

case is detailed as follows: 

Let 𝑋𝑖  be an 𝑛𝑖𝑥1 individual state vector 𝑖.  Let the 𝑛𝑖𝑥1 random error vector 𝜖𝑋𝑖 represent its 

corresponding error.  (Recall that the 𝑛𝑖 components of 𝜖𝑋𝑖 are random variables.) 

Let 𝑋 = [𝑋1
𝑇 . . 𝑋𝑚

𝑇 ]𝑇 be the “stacked” 𝑛𝑥1 multi-state vector corresponding to the 𝑚 individual state 

vectors, and let 𝜖𝑋 = [𝜖𝑋1
𝑇 . . 𝜖𝑋𝑚

𝑇 ]𝑇 represent its corresponding error of the same 𝑛𝑥1 dimension, 

where 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖=1  and the superscript 𝑇 indicates transpose.  Let 𝐶𝑋 represent the corresponding 𝑛𝑥𝑛 

multi-state vector (symmetric) error covariance matrix: 

𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = 𝐸 {[

𝜖𝑋1𝜖𝑋1
𝑇 𝜖𝑋1𝜖𝑋2

𝑇

𝜖𝑋2𝜖𝑋1
𝑇 𝜖𝑋2𝜖𝑋2

𝑇
. . 𝜖𝑋1𝜖𝑋𝑚

𝑇

. . . .
. . . .

𝜖𝑋𝑚𝜖𝑋1
𝑇 𝜖𝑋𝑚𝜖𝑋2

𝑇
. . . .
. . 𝜖𝑋𝑚𝜖𝑋𝑚

𝑇

]} = [

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

]. (5.6-1) 

Note that 𝐶𝑋𝑖 is the 𝑛𝑖𝑥𝑛𝑖 error covariance matrix for state vector 𝑖, 𝐶𝑋𝑖𝑘 the 𝑛𝑖𝑥𝑛𝑘 error cross-covariance 

matrix between state vectors 𝑖 and 𝑘, and 𝐸 is the expected-value operator.  The 𝜖𝑋𝑖 are random error 

vectors, and the error covariance matrices are descriptive predictive statistics based on assumed, but not 

necessarily identified, underlying probability distributions (not sample statistics).  The single dots “ .” in 

Method ratio r > % conv

zero arbitrary fixed arbitrary mean max mean 99th perc max

Table Interp yes no yes no 0 0.0002 0.0005 0.02 0.05 0.15 n/a

M.C. Cov Sqrt yes yes yes yes 0.0001 0.08 0.2 0.05 0.2 0.4 n/a

Integral Eqn yes no yes yes 0.02 8 20 0.001 0.003 0.011 100

Integral Eqn no yes yes yes 0.1 9 48 0.001 0.003 0.011* 99.8

SE_XX

mean-value probabilities execution time (s) |rel error| (%)
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Equation (5.6-1) indicate symmetric entries (e.g., 𝐶𝑋21 = 𝐶𝑋12
𝑇 ), and the double dots “..” indicate 

“continue the pattern”.  𝐶𝑋 is a symmetric, positive definite matrix (strictly positive eigenvalues), i.e., 

invertible and a “valid” error covariance matrix.   

Caution: Although 𝐶𝑋 and necessarily an individual error covariance matrix 𝐶𝑋𝑖 are symmetric, an error 

cross-covariance matrix 𝐶𝑋𝑖𝑘 is not necessarily symmetric. 

Equation (5.6-1) assumes that errors have a mean-value of zero, as is typically the case for predictive 

errors and their statistics; otherwise, the mean-value 𝜖𝑋̅̅̅̅ 𝑖 ≠ 0 for arbitrary state vector 𝑖, and: 

𝐶𝑋𝑖 = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)
𝑇} and 𝐶𝑋𝑖𝑘 = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)(𝜖𝑋𝑘 − 𝜖𝑋̅̅̅̅ 𝑘)𝑇}.   (5.6-2) 

For many applications of interest, the dimensions of 𝑋𝑖  and 𝑋𝑘 are the same, and hence, the dimensions 

of 𝐶𝑋𝑖  and 𝐶𝑋𝑖𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑚, are the same.  In addition, the identity of the components that make up 

𝑋𝑖  and 𝑋𝑘 are the same as well; for example, if state vector 𝑖 corresponds to ground point 𝑖 and 𝑋𝑖  its 

𝑥, 𝑦, 𝑧 ground coordinates, state vector 𝑗 corresponds to ground point 𝑗 and 𝑋𝑗 its 𝑥, 𝑦, 𝑧 ground 

coordinates in the same coordinate system.   

(Note that whether 𝐶𝑋 corresponds to the error in a multi-state or “stacked” state vector or simply the 

error in one (original) state vector, if not stated specifically in the remaining sections of this document, it 

does not matter.  In addition, the dimension of the state vector is generically assumed to be 𝑛𝑥1 if not 

specified otherwise.) 

5.6.1 Details regarding a single state vector  

The error covariance matrix for state vector 𝑖 contains a statistical measure of the errors in state vector 

𝑋𝑖.  More specifically, let the 𝑛𝑖𝑥1 state error vector equal:  

𝜖𝑋𝑖 = [𝜖𝑥1𝑖
휀𝑥2𝑖

. . 𝜖𝑥𝑛𝑖]𝑇.                   (5.6.1-1) 

Its corresponding (symmetric) 𝑛𝑖𝑥𝑛𝑖 error covariance matrix equals: 

𝐶𝑋𝑖 =

[
 
 
 

𝜎1𝑖

2 𝜎1𝑖2𝑖

𝜎2𝑖1𝑖
𝜎2𝑖

2

. . 𝜎1𝑖𝑛𝑖

. . 𝜎2𝑖𝑛𝑖

. . . .
𝜎𝑛𝑖1𝑖

𝜎𝑛𝑖2𝑖

. . . .

. . 𝜎𝑛𝑖
2

]
 
 
 
=

[
 
 
 
𝜎1𝑖

2 𝜎1𝑖2𝑖

. 𝜎2𝑖

2

. . 𝜎1𝑖𝑛𝑖

. . 𝜎2𝑖𝑛𝑖

. .

. .

. . . .
. 𝜎𝑛𝑖

2
]
 
 
 
 , and               (5.6.1-2) 

where, for example, the variance for the first component of state vector 𝑖’s error is 𝜎1𝑖

2 , with corresponding 

standard deviation 𝜎1𝑖
.  (Note that, as mentioned earlier, all errors are assumed to have a mean value of 

zero, i.e., the corresponding estimate is unbiased.)  The covariance (not the “covariance matrix”) between 

the first and second component errors, both corresponding to state vector 𝑖, is 𝜎1𝑖2𝑖
.  The covariance 

specifies the intra-state vector correlation (statistical similarity) between the first and second component 

errors.  The corresponding intra-state vector correlation coefficient is defined as: 

−1 < 𝜌1𝑖2𝑖
=

𝜎1𝑖2𝑖

𝜎1𝑖
𝜎2𝑖

< 1.                   (5.6.1-3) 
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Thus, the covariance can also be written as 𝜌1𝑖2𝑖
𝜎1𝑖

𝜎2𝑖
. Also, for two components with the same identities, 

the intra-state vector correlation coefficient is defined as equal to 1.0, e.g.,  
𝜎1𝑖

2

𝜎1𝑖
𝜎1𝑖

= 1. 

5.6.2 Details regarding two different state vectors    

The 𝑛𝑖𝑥𝑛𝑘 (in general, non-symmetric) cross-covariance matrix corresponding to state vector 𝑖 and state 

vector 𝑘 specifies the inter-state vector correlation (statistical similarity) between the various error 

components corresponding to the two different state vectors: 

휀𝑋𝑖 = [𝜖𝑥1𝑖
휀𝑥2𝑖

. . 𝜖𝑥𝑛𝑖]𝑇  휀𝑋𝑘 = [𝜖𝑥1𝑘
휀𝑥2𝑘

. . 𝜖𝑥𝑛𝑘]𝑇.             (5.6.2-1) 

𝐶𝑋𝑖𝑘 = [

𝜎1𝑖1𝑘
𝜎1𝑖2𝑘

𝜎2𝑖1𝑘
𝜎2𝑖2𝑘

. . 𝜎1𝑖𝑛𝑘

. . 𝜎2𝑖𝑛𝑘
. . . .
. . . .

. . . .

. . 𝜎𝑛𝑖𝑛𝑘

] , and                  (5.6.2-2) 

where, for example, the corresponding inter-state vector correlation coefficient between the first 

component error for state vector 𝑖 and the second component error for state vector 𝑘 is defined as: 

−1 < 𝜌1𝑖2𝑘
=

𝜎1𝑖2𝑘

𝜎1𝑖
𝜎2𝑘

< 1.                   (5.6.2-3) 

When the two components have the same identities, and the inter-state vector correlation coefficient is 

written as a function of “delta” between state vector applicabilities (e.g. delta time for state vectors from 

a stochastic process), the function is typically termed an “auto-correlation function”; when they have 

different identities, a “cross-correlation function”.  When the state vectors correspond to the same 

stochastic process or random field, the applicable correlation functions are typically spdcf.   

5.6.3 Applicability of definition: estimators, stochastic processes, and random fields  

As mentioned in Section 5.6 and detailed in Section 5.8-5.10, the multi-state vector and corresponding 

multi-state vector error covariance matrix have many applications. These range from the representation 

of applicable inputs as well as outputs corresponding to a WLS estimate of a multi-state vector, to the 

representation of a collection of individual state vectors and their a priori errors corresponding to 

stochastic processes and/or random fields such that their temporal and spatial correlations, respectively, 

are also taken into account.  The correlations are typically represented using strictly positive definite 

correlation functions (spdcf). 

Although the detailed symbology in Section 5.6.1 and 5.6.2 is unavoidably somewhat complicated, most 

of the following sections of this document do not use symbology any “deeper” or complicated than that 

corresponding to Equation (5.6-1).   

Also, it is sometimes convenient to equate individual state vectors with individual “events”, such as 

individual “collection” times corresponding to a stochastic process.  Correspondingly, intra-state vector 

correlation and inter-state vector correlation are sometimes termed intra-event correlation and inter-

event correlation, respectively. 

Finally, when convenient, a multi-state vector and its error covariance matrix can also always be 

considered a (large) single-state vector and error covariance matrix without corresponding detail into 
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individual state vectors.  See Equation (5.2-4) for definitions and symbology for an assumed (total) state 

vector dimension of 𝑛𝑥1. 

5.6.4 Generation of the Relative Error Covariance Matrix (predicted relative accuracy) 

Relative error is defined between a pair of state vectors 𝑖 and 𝑘 of the same dimension as follows: 

𝜖𝑋𝑖𝑘 ≡ 𝜖𝑋𝑖 − 𝜖𝑋𝑘                    (5.6.4-1) 

Its corresponding relative error covariance matrix, assuming mean-values of zero, is equal to: 

𝑟𝑒𝑙𝐶𝑋𝑖𝑘 = 𝐸{𝜖𝑋𝑖𝑘𝜖𝑋𝑖𝑘
𝑇 } = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋𝑘)(𝜖𝑋𝑖 − 𝜖𝑋𝑘)𝑇} =               (5.6.4.2) 

𝐸{𝜖𝑋𝑖𝜖𝑋𝑖
𝑇} − 𝐸{𝜖𝑋𝑖𝜖𝑋𝑘

𝑇} − 𝐸{𝜖𝑋𝑘𝜖𝑋𝑖
𝑇} + 𝐸{𝜖𝑋𝑘𝜖𝑋𝑘

𝑇} = 𝐶𝑋𝑖 − 𝐶𝑋𝑖𝑘 − 𝐶𝑋𝑖𝑘
𝑇 + 𝐶𝑋𝑘. 

Note that if the state vectors 𝑖 and 𝑗 correspond to 3d locations, the relative error covariance matrix is a 

3𝑥3 matrix.  And in many corresponding applications, errors between the two state vector components 

are positively correlated; hence, 𝐶𝑋𝑖 > 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 and 𝐶𝑋𝑗 > 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 (see Section 5.4.5), i.e., the expected 

magnitude of the 3𝑥1 error in the relative difference (“distance”) between the two state vectors is smaller 

than either’s individual error.  This is due to statistical “cancellation” of common errors. 

Note that once the relative error covariance matrix is computed (and is positive definite, as expected), a 

corresponding relative error ellipsoid as well as relative accuracy summaries rel_LE, rel_CE, and rel_SE can 

be computed using exactly the same techniques as detailed in Sections 5.4 and 5.5, respectively -   simply 

substitute 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 for 𝐶𝑋. 

5.7 Propagation of Multi-State Vector Error Covariance Matrices 
In many applications of interest, either a random error vector corresponding to a single stand-alone state 

vector 𝑋, or a random error vector corresponding to a state vector 𝑋𝑖  within a multi-state vector 𝑋, are 

“propagated”, i.e., mapped or projected to a random error vector corresponding to a related state vector 

𝑋′.  The mapping is typically linear between the random error vectors, where it and its properties are as 

described in Equation (5.3.2-1).  In particular, if we assume an 𝑛𝑥1 mean-zero random error 𝜖𝑋 being 

mapped to a mean-zero 𝑚𝑥1 random error 𝜖𝑋′ via an 𝑚𝑥𝑛 matrix Ω: 

𝜖𝑋′ = Ω 𝜖𝑋 and 𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′)(𝜖𝑋′ )𝑇) = Ω𝐶𝑋Ω𝑇,       (5.7-1) 

where 𝐶𝑋′ is positive definite if Ω is full rank (linearily independent rows or columns), and positive semi-

definite, if not. 

5.7.1 Error Covariance Representation in Different Coordinate Systems 

One application of the above is the transformation of an error covariance matrix from one coordinate 

system to another.  For example, assume that a Multi-image Geopositioning (MIG) solution for 

geolocation 𝑋 and its error covariance matrix 𝐶𝑋 are with respect to an ECF coordinate system, as is 

common.  However, we want to express the corresponding accuracy prediction (error covariance matrix) 

in an ENU coordinate system, a common and recommended practice as well. 

Let 𝜖𝑋 and 𝜖𝑋′ represent the (unknown) 3𝑥1 error in ECF and ENU, respectively.  Let 𝐶𝑋 and 𝐶𝑋′ represent 

the 3𝑥3 error covariance matrix in ECF and ENU, respectively.  Let Ω represent the 3𝑥3 (full rank) ECF-to-
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ENU transformation matrix, an orthonormal rotation matrix.  The mean-value of 𝜖𝑋 is zero because the 

MIG estimate is unbiased; hence, the mean-value of 𝜖𝑋′ is zero as well: 

 𝜖𝑋̅̅̅̅ ′ = 𝐸{𝜖𝑋′} = 𝐸{Ω𝜖𝑋} = Ω𝐸{𝜖𝑋} = Ω𝜖𝑋̅̅̅̅ = 0.                 (5.7.1-1) 

And per Equation (5.7.1) and Equation (5.3.2-1), the solution error covariance matrix applicable to an ENU 

representation of error is a valid error covariance matrix and equal to: 

𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′)(𝜖𝑋′ )𝑇) = 𝐸{(Ω𝜖𝑋)(Ω𝜖𝑋)𝑇) = Ω𝐶𝑋Ω𝑇                 (5.7.1-2) 

(Note that the actual mapping of geolocation coordinates (not their error) from ECF to ENU can be 

expressed as 𝑋′ = Ω(𝑋 − 𝑋0) = Ω𝑋 − Ω𝑋0, where 𝑋0 is the fixed origin of the ENU (local tangent plane) 

coordinate system expressed in the ECF coordinate system.  The term Ω𝑋0 has no effect on the mapping 

of errors or their covariance matrix from the ECF to ENU coordinate system since it is a deterministic 

constant.) 

Many of the general mappings Ω of Equation (5.7-1) are based on a first-order Taylor Series expansion, 

the mathematical derivation detailed in Section 5.7.2. 

5.7.2 First-order Taylor Series Expansion 

Let the 𝑚𝑥1 state vector 𝑋′ be a function of the 𝑛𝑥1 state vector 𝑋, indicated as 𝑋′ = 𝑋′(𝑋). 

Perform a first-order Taylor Series expansion about the 𝑛𝑥1 operating point 𝑋0 using appropriate first-

order (vector) partial derivatives: 

𝑋′(𝑋) = 𝑋′(𝑋0) +
𝜕𝑋′(𝑋0)

𝜕𝑋
(𝑋 − 𝑋0) + ℎ𝑖𝑔ℎ𝑒𝑟_𝑜𝑟𝑑𝑒𝑟_𝑡𝑒𝑟𝑚𝑠               (5.7.2-1) 

𝜖𝑋′ ≡ 𝑋′(𝑋) − 𝑋′(𝑋0) =
𝜕𝑋′(𝑋0)

𝜕𝑋
(𝑋 − 𝑋0) + ℎ𝑖𝑔ℎ𝑒𝑟_𝑜𝑟𝑑𝑒𝑟_𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≡
𝜕𝑋′(𝑋0)

𝜕𝑋
𝜖𝑋 + ℎ𝑖𝑔ℎ𝑒𝑟_𝑜𝑟𝑑𝑒𝑟_𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≡ Ω𝜖𝑋 + ℎ𝑖𝑔ℎ𝑒𝑟_𝑜𝑟𝑑𝑒𝑟_𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≅ Ω𝜖𝑋 ,                      (5.7.2-2) 

and where 𝑚𝑥𝑚 𝐶𝑋′ = 𝐸{(Ω𝜖𝑋)(Ω𝜖𝑋)𝑇 = Ω𝐶𝑋Ω𝑇, and 𝑚𝑥𝑛 Ω =
𝜕𝑋′(𝑋0)

𝜕𝑋
 . 

Note that the above process or “linearization” is also the basis for underlying equations in many optimal 

estimators (see Section 5.8.1 of TGD 1 and TGD 2d in general).   

5.7.3 Other propagations 

There are other propagations that correspond to higher-order Taylor Series expansions as well as Monte 

Carlo statistical methods.  These typically correspond to various classes of estimators, and are discussed 

somewhat further in Section 5.11 of TGD 1 and TGD 2d in general. 
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5.8 Generic Methods for Generation of the Multi-State Vector Error Covariance 

Matrix  
A valid multi-state vector error covariance matrix 𝐶𝑋 was defined in Equation (5.6-1) and can be generated 

by essentially three general methods/processes: (1) explicit a priori modeling (2) WLS batch estimator, or 

(3) Kalman filter (or smoother) estimator.  For all three methods, the corresponding mean-value of error 

is typically assumed zero.  For the last two methods, this corresponds to unbiased estimators, as typically 

assumed.  These three methods are presented in Sections 5.8.1, 5.8.2, and 5.8.3, respectively. 

5.8.1 A priori modeling 

A priori modeling typically specifies 𝐶𝑋, or sub-blocks or parameters that can generate 𝐶𝑋, for a multi-

variate state vector 𝑋 that will be available (later) during normal operations.   

General examples 

For example, 𝑋 could be a measurement vector that is provided via the manual or automatic 

measurement of the pixel locations of a set of ground points in a set of images.  𝐶𝑋 is computed for the 𝑋 

in order to specify its “uncertainty”, or more correctly, its predicted accuracy.  Its computation could be 

based solely on a priori modeling from empirical information of past measurement performance, or it can 

be augmented by the feedback of internal performance metrics from the automatic correlator.  For this 

example, 𝐶𝑋 typically has zero inter-state vector correlation, i.e., measurement errors associated with 

identifying and measuring pixel locations are usually modeled as uncorrelated between points.  (This 

particular example did not include the effects of sensor support data errors on the measurements, only 

“mensuration” or direct measurement error.) 

As a second example, 𝑋 could consist of a priori estimates of adjustable parameters 𝑋𝑖  for sensor support 

data that are about to be adjusted (corrected) simultaneously for 𝑚 images in a WLS batch adjustment.  

(Or more generally, adjustable parameters for 𝑘 different sensors, each with 𝑚𝑘 measurements of 

common object(s) of interest.)  The multi-state vector error covariance matrix 𝐶𝑋  is computed for the 𝑋 

in order to specify its (pre-adjustment) predicted accuracy.  It also places “statistical constraints” on the 

size of the upcoming WLS corrections.   

The use of empirical information 

In general, the computation of 𝐶𝑋 is based on the combination of empirical information of past 

performance as well as system design.  For the above example, 𝐶𝑋 typically has significant inter-state 

vector correlation, which corresponds to an a priori model of sensor support data errors as a multi-variate 

stochastic process with temporal correlation of errors. 

In general, empirical information used to model predictive statistics (e.g., 𝐶𝑋) can include sample statistics 

of measured errors relative to “ground-truth” – see Section 5.8.1.2 for further discussion.  Regardless the 

type of empirical information, the following “mechanics” for the actual specification/generation of 𝐶𝑋 are 

typical: 

The a priori modeling of correlations 
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A priori modeling is typically applicable to a collection of individual state vectors of the same size and 

definition.  In some applications, the individual 𝐶𝑋𝑖 are also constant over all 𝑖 = 1, . . , 𝑚.  The internal 

structure (elements) of 𝐶𝑋𝑖  specify the intra-state vector correlations.  For example, if 𝐶𝑋𝑖 is a diagonal 

matrix, intra-state vector correlations are zero.   

Typically, the cross-covariance 𝐶𝑋𝑖𝑘 are not provided directly by the a priori model, but are assembled 

using an a priori strictly positive definite correlation function (spdcf), 𝜌(𝛿𝑡𝑖𝑘), that is provided in order to 

specify inter-state vector correlation, i.e., 

 𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) ∙ 𝐶𝑋𝑖
1/2

𝐶𝑋𝑘
1/2

,                     (5.8.1-1) 

where the superscript 1/2 indicates matrix principal square-root, as further detailed in Section 5.9.3 of 

this document.  This form of generation is practical, relatively simple, and ensures a valid 𝐶𝑋. 

Once the appropriate 𝐶𝑋𝑖𝑗 are assembled, they are combined with the various 𝐶𝑋𝑖 to form the a priori 𝐶𝑋 

to go with the provided 𝑋.   

Note that this particular form of modeling is termed the “spdcf method”.  It is general enough to model 

errors as stochastic processes or as random fields (see TGD 1).  These can be stationary stochastic 

processes or a subclass of non-stationary stochastic processes, where the 𝐶𝑋𝑖 are allowed to vary over 𝑖 

(time) but the spdcf remains the same.  The same concepts for a random field are also applicable.   

An additional generality involving the “spdcf method” is applicable to non-stationary random fields (or 

stochastic processes) with different predictive statistics (spdcf as well as error covariance matrix) that are 

applicable to different areas or partitions of the random field via a Mixed Gaussian Random Field, as 

documented in TGD 2f (External Data and its Quality Assessment). 

5.8.1.1 Gauss-Markov as an underlying error model 

A time sequence of sensor a priori metadata errors, as well as many other error processes, may be 

reasonably modeled as a first order, mean-zero, Gauss-Markov stochastic process.  In particular, assuming 

a scalar error for ease of example (e.g., sensor position x-component error as a function of time or index 

𝑖) and equal time steps for convenience:   

𝜖𝑥𝑖+1 = 𝑎𝑥𝜖𝑥𝑖 + 𝜔𝑖  , 𝑤ℎ𝑒𝑟𝑒  𝑎𝑥 = 𝑒−Δ𝑡/𝑇𝑥  , 𝐸{𝜖𝑥𝑖𝜖𝑥𝑘} =  𝑒−|𝑖−𝑘|Δ𝑡/𝑇𝑥  𝜎𝑥
2 , and          (5.8.1.1-1) 

𝐸{𝜔𝑖𝜔𝑘} = (1 − 𝑎𝑥
2)𝜎𝑥

2𝛿𝑖𝑘 . 

In the above, 𝜎𝑥 and 𝑇𝑥 are the specifiable (predictive) standard deviation (one-sigma) and temporal 

correlation time constant for the stochastic process 𝑥𝑖, respectively, 𝐸{} the expected value operator, 𝛿𝑖𝑘  

the kronecker delta, and 𝜔𝑘 Gaussian white noise with a corresponding standard deviation that is a 

function of  𝜎𝑥 and 𝑇𝑥. 

Generalizing to three components contained in the multi-variate stochastic process 𝑋𝑖, assuming “steady-

state” operations, and a discrete-time system: 
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𝜖𝑋𝑖+1 = Φϵ𝑋𝑖 + W𝑖  , 𝑤ℎ𝑒𝑟𝑒  Φ = [

𝑎𝑥 0 0
0 𝑎𝑦 0

0 0 𝑎𝑧

]  , 𝐸{𝜖𝑋𝑖𝜖𝑋𝑖
𝑇} = 𝐶𝑋𝑖 = [

𝜎𝑥
2 0 0

0 𝜎𝑦
2 0

0 0 𝜎𝑧
2

]        (5.8.1.1-2) 

𝐸{𝜖𝑋𝑚𝜖𝑋𝑛
𝑇} = 𝐶𝑋𝑖𝑘 = Φ|𝑖−𝑘|𝐶𝑋𝑖 , and 

𝐸{W𝑖W𝑖
𝑇} = [

(1 − 𝑎𝑥
2) 0 0

0 (1 − 𝑎𝑦
2) 0

0 0 (1 − 𝑎𝑧
2)

] 𝐶𝑋𝑖𝛿𝑖𝑘  ≡ 𝑄𝛿𝑖𝑘. 

Thus, assuming that 𝑎 = 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 for simplicity (not required), the above is implemented as an 

underlying error model for predictive statistics via the spdcf method by equating: 

𝐶𝑋𝑖 = [

𝜎𝑥
2 0 0

0 𝜎𝑦
2 0

0 0 𝜎𝑧
2

] for all 𝑖, and spdcf 𝜌(𝛿𝑡𝑖𝑘) = 𝑎|𝑖−𝑘| = 𝑒−Δ𝑡|𝑖−𝑘|/𝑇.                   (5.8.1.1-3) 

Therefore, via Equation (5.8.1-1): 

𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) ∙ (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑘
1/2

) = 𝑒−
Δ𝑡|𝑖−𝑘|

𝑇 [

𝜎𝑥 0 0
0 𝜎𝑦 0

0 0 𝜎𝑧

] [

𝜎𝑥 0 0
0 𝜎𝑦 0

0 0 𝜎𝑧

] = Φ|𝑖−𝑘|𝐶𝑋𝑖,         (5.8.1.1-4)  

i.e., consistent with the underlying error model as specified by Equation (5.8.1.1-2).   

Based on Equations (5.8.1.1-2) for 𝐶𝑋𝑖 and Equation (5.8.1.1-4) for 𝐶𝑋𝑖𝑘, the multi-state vector error 

covariance matrix 𝐶𝑋 is easily assembled per Equation 5.6-1.  Of course, prior to implementation and as 

part of the a priori modeling task, the values for the standard deviations 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and the value for the 

time constant 𝑇 must be specified. 

Figure 5.8.1.1-1 presents a simulation of one realization of x-component error based on implementation 

of Equation (5.8.1.1-1) (or one component of Equation (5.8.1.1-2)), assuming 𝜎𝑥 = 1 meter and time-

constant 𝑇 = 240 seconds.  Figure 5.8.1.1-2 presents the corresponding deterministic spdcf, a decaying 

or damped exponential. 
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Figure 5.8.1.1-1: Gauss-Markov first order process example – one realization 

 

Figure 5.8.1.1-2: Gauss-Markov first order process example – corresponding spdcf 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

3
GM scalar discrete stochastic process (steady state one-sigma = 1 m)

time (sec)

x
 (

m
e
te

rs
)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GM temporal correlation function (time constant = 240 sec)

delta time (sec)

c
o
rr

e
la

ti
o
n
 (

u
n
it
le

s
s
)



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
100 

References for Gauss-Markov stochastic processes include [21], [16], and [12], and for Gauss-Markov 

random fields [30], [18], and [20].  TGD 1 (Overview and Methodology) also presents definitions for and 

simple comparison between random vectors, stochastic processes, and random fields.   

Reference [18] and TGD 2e (Monte-Carlo Simulation) detail first-order Gauss-Markov sequential 

generation equations for 1D, 2D, 3D, and 4D (e.g., 3D spatial and 1D time) random fields, with Figure 

5.8.1.1-3 an example corresponding to a 2D scalar random field (the explicit error notation 𝜖 dropped 

from 𝜖𝑧 for convenience.) 

 

Figure 5.8.1.1-3: Sequential generation of a 2D scalar random field  

The (steady state) homogeneous random field corresponds to a scalar 𝑧𝑘,𝑙  at horizontal grid location 𝑘 

and 𝑙.  The standard deviation of 𝑧𝑘,𝑙 is specifiable as 𝜎𝑧 and the spdcf specifiable as 𝜌(∆𝑘, ∆𝑙) =

𝑟𝑥
∆𝑙𝑟𝑦

∆𝑘 = 𝑒−∆𝑙𝛿𝑥/𝑇𝑥𝑒−∆𝑘𝛿𝑦/𝑇𝑦, where ∆𝑙 and ∆𝑘 are the number of grid units between two locations, 𝛿𝑥  

and 𝛿𝑦 are meters/grid unit in the two directions, and 𝑇𝑥 and 𝑇𝑦 specifiable distance constants for the two 

spatial directions.   

Thus, assuming a 2d to 1d index ordering function 𝑖 = 𝑜(𝑙, 𝑘) that maps grid location to individual state 

vector location within the multi-state vector, we have the following predictive statistics compatible with 

the spdcf method (Section 5.9.3): 

𝜖𝑋𝑖 ≡ 𝑧𝑘,𝑙, with                                               (5.8.1.1-5) 

1𝑥1 covariance matrix 𝐶𝑋𝑖 = 𝜎𝑧
2, 

Spdcf 𝜌(𝛿𝑋𝑖𝑗) = 𝑒−∆𝑙𝑖𝑗𝛿𝑥/𝑇𝑥𝑒−∆𝑘𝑖𝑗𝛿𝑦/𝑇𝑦, and  
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1𝑥1 cross-covariance matrix 𝐶𝑋𝑖𝑗 = 𝜌(𝛿𝑋𝑖𝑗)𝜎𝑧𝜎𝑧 = 𝜌(𝛿𝑋𝑖𝑗)𝜎𝑧
2,  

where 𝛿𝑋𝑖𝑗  is the 2d spatial separation between 𝑋𝑖  and 𝑋𝑗 at grid locations (𝑘, 𝑙)𝑖  and (𝑘, 𝑙)𝑗, respectively, 

that are associated with 𝜖𝑧𝑖 and 𝜖𝑧𝑗, respectively. 

5.8.1.2 Use of sample statistics 

Empirical information used to model errors and their predictive statistics can include that derived from 

tests using sample statistics of measured errors relative to available “ground truth” or fiducial 

information.  The type of “ground truth” is dependent on the approach available.  For example, in the 

“direct approach”: “true” state vector values are from an independent source and directly correspond to 

the actual state vectors of interest.  In the “indirect approach”: “true” 3d ground coordinates of points 

are from an independent source and are related to corresponding estimates of their locations that can be 

generated from the actual state vectors of interest.   

In general, the “direct approach” is simpler, more straightforward, and yields better results.  The “indirect 

approach” requires a “reverse mapping” of ground coordinate errors to the actual errors of interest, and 

is typically iterative in nature.  In both approaches, enough samples must be available for reasonable 

statistical significance.  Predictive statistics of “truth” errors should also be available and taken into 

account regarding the degree-of fidelity of the derived predictive statistics of interest.  Thus, in the indirect 

approach, for example, if the actual state vectors of interest only contribute to approximately one meter 

of derived ground point error, “ground truth” errors need to be on the order of ten centimeters or less, 

not meters.   

Finally, given a reasonable number of samples of error, estimates of corresponding predictive statistics 

are generated: error covariance matrix as well as spdcf, the latter required if errors correspond to a 

stochastic process or random fields.  Checks for biases (significant non-zero mean-values) are typically 

performed as well.  Sample statistics and their relationship to predictive statistics are discussed further in 

TGD 2b (Sample Statistics) as well as in TGD 2f (External Data and Quality Assessment), the latter providing 

specific algorithms for estimating error covariance matrices, spdcf, and biases if present.  In particular, 

Appendix B of TGD 2f details the computation of sample statistics and the corresponding population of a 

predicted accuracy model for a geolocation product, such as a Point Cloud. 

There is also a reasonable amount of research regarding estimation of spdcf (aka variograms, correlogram) 

in the field of Geostatistics, with references [4], [2], and [34] applicable.  For image-based geopositioning, 

the temporal correlation of a stochastic process corresponding to sensor support data errors affects the 

horizontal and vertical accuracy of derived ground point locations differently, which can be taken 

advantage of when estimating the spdcf [12]. 

5.8.2 Batch WLS 

The second general method to generate a valid multi-state vector error covariance matrix 𝐶𝑋  corresponds 

to a Weighted Least Squares (WLS) or a similar batch estimator. 

The following equation presents the general form for the WLS batch estimate of the multi-state vector 𝑋 

and its multi-state vector error covariance matrix 𝐶𝑋, given measurements 𝑀 with corresponding 
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measurement error covariance matrix Σ𝑀.  If the dimension of 𝑋 is 𝑛𝑥1, the dimension of 𝐶𝑋 is 𝑛𝑥𝑛.  The 

(post-estimate) 𝑋 and 𝐶𝑋 are computed automatically by the estimator, assuming it is set-up properly 

(e.g., sufficient observability):   

𝑋 = 𝐶𝑋𝐵𝑇𝑊𝑀, where 𝐶𝑋 = (𝐵𝑇𝑊𝐵)−1, 𝑊 = Σ𝑀
−1, and 𝐵 =

𝜕𝑀

𝜕𝑋
.               (5.8.2-1) 

Furthermore, assuming 𝑋 = [𝑋1
𝑇 . . 𝑋𝑚

𝑇 ]𝑇, each 𝑋𝑖  of dimension 𝑛𝑖𝑥1, then 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖=1 .  If 𝐶𝑋𝑖 is the 

𝑛𝑖𝑥𝑛𝑖 error covariance for 𝑋𝑖, then 𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = [

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

], the 𝑛𝑥𝑛 error covariance 

matrix for 𝑋.                                          (5.8.2-2) 

It is required that 𝐶𝑋 is symmetric and positive definite, which implies that all of the 𝐶𝑋𝑖 are symmetric 

and positive definite, as well.  These required conditions on 𝐶𝑋 are guaranteed automatically for a well-

formulated WLS solution.  Note that the internal structure of the cross-covariance matrices 𝐶𝑋𝑖𝑘 can be 

somewhat complicated, not necessary of the relatively simple form 𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑗) ∙ 𝐶𝑋𝑖
1/2

𝐶𝑋𝑘
1/2

, typically 

used in a priori modeling.  Their corresponding inter-state vector correlations, and possibly intra-state 

vector correlations, are usually large (absolute value of correlation coefficients near 1) due to the 

estimator’s use of a common set of measurements 𝑀 for the simultaneous solutions for the various 𝑋𝑖, 

i.e., 𝑋. 

The dimension and the identities of the components which make up  𝑋𝑖  and 𝑋𝑘 need not be the same for 

batch WLS. Thus, for example, the cross-covariance matrix 𝐶𝑋𝑖𝑘 is of dimension 𝑛𝑖𝑥𝑛𝑘, where 𝑛𝑖 is not 

necessarily equal to 𝑛𝑘.  See TGD 2d (Estimators and Quality Control) for details regarding the batch WLS 

estimator.  

5.8.3 Kalman filter or smoother 

The third general method to generate a valid multi-state vector error covariance matrix 𝐶𝑋  corresponds 

to a Kalman filter or a similar sequential estimator.  See TGD 2d (Estimators and Quality Control) for details 

regarding the Kalman filter.  

A standard Kalman filter computes and sequentially outputs a time series of state vectors (estimates) and 

corresponding error covariance matrices: 𝑋1, 𝐶𝑋1, 𝑋2, 𝐶𝑋2, .. , 𝑋𝑖, 𝐶𝑋𝑖, .. , 𝑋𝑚, 𝐶𝑋𝑚, where the dimension 

and underlying definition of the state vector is common across the time series.  

This is not enough to assemble 𝐶𝑋, i.e., the cross-covariance matrices 𝐶𝑋𝑖𝑘 are not included.  However, 

reference [13] presents a rigorous solution.  It recommends that the Kalman Filter also compute the “A 

matrix” at each time or “update” stage, i.e., augment the output  𝑋𝑖, 𝐶𝑋𝑖 at time step 𝑖 to 𝑋𝑖, 𝐶𝑋𝑖, 𝐴𝑖
𝑖+1.  

The latter “A matrix” can be easily computed by the Kalman Filter and is the same dimension as 𝐶𝑋𝑖 .   

This process is outlined in Figure 5.8.3-1.  Note that the matrices used to generate 𝐴𝑖
𝑖+1 are the standard 

matrices available internally to the Kalman Filter at each update stage 𝑘: the gain matrix (𝐺),the  partial 

derivatives of the measurements with respect to the state (𝐻), and the state transition matrix (Φ). 
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Figure 5.8.3-1: Augmentation of the standard Kalman Filter output with  

the “A matrix” - required for “down-stream” cross-covariance generation 

Given the augmented Kalman Filter output for a time series 𝑖 = 1, . . , 𝑚, the 𝑚 different “A matrices” can 

be used to rigorously (no approximation) assemble any of the possible (
𝑚
2

) number of  𝐶𝑋𝑖𝑘.  For example, 

if 𝑚 = 5000, any of the possible ≅ 12,500,000 different 𝐶𝑋𝑖𝑘. This is possible due to the transitive 

property of the “A matrix” as summarized in Figure 5.8.3-1.   

See reference [13] for more details regarding the “A matrix”, including derivation of all of its properties.  

Reference [1] derives similar results for a smoother’s “S matrix”.  In addition, reference [17] extends the 

Kalman Filter results of [13] to include two new features: 

 The Kalman filter state (membership) definition can be dynamic, i.e., old components removed 

and new ones added throughout the time-sequence 

 “A matrix” processing can be tailored to computation of the error cross-covariance matrix for a 

subset of state components that are (only) of interest to “down-stream” applications, which can 

result in large savings in band-width 

5.8.3.1 Kalman filter example using the “A matrix” required for cross-covariance 

Reference [13] also includes a realistic simulated example of the significant inter-state vector correlation 

produced by a Kalman Filter (KF), and its impact on a “down-stream” application that estimates 3d ground 

point locations using the KF-registered image frames (support data) associated with a subset of ten 

thousand full-motion video frames taken at a 10 hertz rate.  KF registration solves for corrections to the 

support data in real-time. 

More specifically, this “down-stream” application solves for the 3d location of a ground point via a WLS 

estimator using the pixel location of the ground point measured in two of the registered frames which are 
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separated in time (frames) for adequate solution geometry.  The measurements of the ground point in 

the registered frames have two primary sources of error: (1) errors in the explicit measurement of the 

ground point’s pixel location in each of the two frames, and (2) errors in the previous frame registration 

(support data) projected to image space for each of the two frames.  The latter errors are due to KF 

solution errors, are dominant, and contain significant inter-state vector correlation.  And in order for the 

WLS application to compute the corresponding multi-state vector error covariance matrix for its input 

measurements, the corresponding multi-state vector error covariance matrix for the KF solution must be 

available and used. 

The following figures correspond to the above example and present the auto correlation coefficients for 

KF solution errors for support data attitude (orientation) corrections omega, phi, kappa (Figure 5.8.3.1-1) 

at frame 7550 with all subsequent frames, and the cross-correlation coefficients for attitude corrections 

with sensor x-component position corrections at frame 7550 with all subsequent frames (Figure 5.8.3.1-

2), i.e., auto-correlation functions and cross-correlation functions, respectively.  These correlation 

coefficients were computed from the 𝐶𝑋𝑖 output by the KF and the 𝐶𝑋𝑖𝑘 computed from the 𝐴𝑖
𝑖+1output 

by the KF.  Only the “A matrix” method can rigorously capture the variability of these inter-event 

correlations, and thus, support optimal WLS “down-stream” 3d ground point estimation. 

(Note that the significantly negative-valued cross-correlation function presented in Figure 5.8.3.1-2 can 

be considered due to negative-valued intra-state vector correlation “damped” by positive-valued inter-

state vector correlation that decreases in value with increasing time between Kalman Filter state vector 

updates.) 

 

Figure 5.8.3.1-1: KF auto-correlation functions 
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Figure 5.8.3.1-2: KF cross-correlation functions 

 

5.9 Generic Methods for Representation/Dissemination of the Multi-State 

Vector Error Covariance Matrix 
A valid multi-state vector error covariance matrix 𝐶𝑋 was defined in Equation (5.6-1), and the three generic 

methods for its generation were detailed in Section 5.8.  In addition, there are three generic methods for 

the representation and dissemination of the multi-state vector error covariance matrix 𝐶𝑋 in to “down-

stream” applications: (1) direct, (2) “A matrix”, and (3) spdcf.   These methods are related to but are 

distinct from the corresponding generation methods of Section 5.8.   

The following descriptions of these generic methods for representation and dissemination make use of 

the following notation for a multi-state vector error covariance matrix originally introduced in Section 5.6 

(Equation 5.6-1) and repeated here for convenience: 

𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = 𝐸 {[

𝜖𝑋1𝜖𝑋1
𝑇 𝜖𝑋1𝜖𝑋2

𝑇

𝜖𝑋2𝜖𝑋1
𝑇 𝜖𝑋2𝜖𝑋2

𝑇
. . 𝜖𝑋1𝜖𝑋𝑚

𝑇

. . . .
. . . .

𝜖𝑋𝑚𝜖𝑋1
𝑇 𝜖𝑋𝑚𝜖𝑋2

𝑇
. . . .
. . 𝜖𝑋𝑚𝜖𝑋𝑚

𝑇

]} = [

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

]. (5.9-1) 

Let us assume that 𝑋 and the multi-state vector error covariance matrix are to be disseminated and a 

subset subsequently assembled “down-stream” corresponding to three of the individual state vectors 𝑋1, 

𝑋3, and 𝑋5, as a specific example.  This example not only serves for convenience of description, but is 

typical operationally.  For example, if 𝑋 corresponds to the solution for adjusted image support data in an 

image bundle adjustment of 𝑚 = 200 images over a large area of interest, there are typically multiple 
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downstream applications that use different subsets of these adjusted (registered) images in order to 

accurately extract ground points over their smaller area of interest.  However, the bundle adjustment 

(Value-Added Processing module) must output the entire 𝑋 and 𝐶𝑋 in order to serve all of the applications. 

The descriptions below do not include the corresponding multi-state vector 𝑋 nor its components 𝑋1, 𝑋3, 

and 𝑋5 for convenience and the fact that bandwidth is dominated by the error covariance matrix.  As a 

reminder, the down-stream application is only interested in 𝑋1, 𝑋3, and 𝑋5 and their corresponding (full) 

error covariance matrix termed 𝐶𝑋∗. 

5.9.1 Direct method 

Disseminate: 𝐶𝑋1, 𝐶𝑋12, 𝐶𝑋13, .. , 𝐶𝑋1𝑚,   𝐶𝑋2, 𝐶𝑋23, 𝐶𝑋24, .. , 𝐶𝑋2𝑚, .. ,  𝐶𝑋𝑚.             (5.9.1-1) 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 𝐶𝑋∗ = [

𝐶𝑋1 𝐶𝑋13 𝐶𝑋15

. 𝐶𝑋3 𝐶𝑋35

. . 𝐶𝑋5

].          (5.9.1-2) 

The direct method is compatible with WLS generation of 𝐶𝑋.  In addition, the dimension and the identities 

of the components which make up the corresponding  𝑋𝑖  and 𝑋𝑘 need not be the same for the direct 

method. 

5.9.2  “A matrix” method 

Disseminate: 𝐶𝑋1, 𝐴1
2, 𝐶𝑋2, 𝐴2

3, .. , 𝐶𝑋𝑚−1, 𝐴𝑚−1
𝑚  , 𝐶𝑋𝑚, 𝐴𝑚

𝑚+1.               (5.9.2-1) 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 

 𝐶𝑋∗ = [

𝐶𝑋1 𝐶𝑋1(𝐴2
3𝐴1

2)𝑇 𝐶𝑋1(𝐴4
5𝐴3

4𝐴2
3𝐴1

2)
𝑇

. 𝐶𝑋3 𝐶𝑋3(𝐴4
5𝐴3

4)
𝑇

. . 𝐶𝑋5

].               (5.9.2-2) 

The “A matrix” method is compatible with Kalman Filter (or smoother, with some modifications) 

generation of 𝐶𝑋, as discussed in Section 5.8.3.  The dimension and the identities of the components which 

make up the corresponding  𝑋𝑖  and 𝑋𝑘 are the same for the “A matrix” method. 

5.9.3 Spdcf method 

Disseminate: 𝐶𝑋1, 𝐶𝑋2, .. , 𝐶𝑋𝑚 and a few parameters defining the scalar-valued spdcf 𝜌(𝛿𝑡), where 𝛿𝑡 can 

correspond to delta time or delta space, and can be a scalar or multi-dimensional.  (𝛿𝑡𝑖𝑘  is the delta time 

or delta distance between applicabilities of individual state vectors, or events, 𝑖 and 𝑘). 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 

  𝐶𝑋∗ =

[
 
 
 𝐶𝑋1 𝜌(𝛿𝑡13) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋3

1/2
) 𝜌(𝛿𝑡15) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋5

1/2
)

. 𝐶𝑋3 𝜌(𝛿𝑡35) ∙ (𝐶𝑋3
1/2

) (𝐶𝑋5
1/2

)

. . 𝐶𝑋5 ]
 
 
 

,               (5.9.3-1) 
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where the superscript 1/2 indicates principal matrix square root.  The dimension and the identities of the 

components which make up the corresponding  𝑋𝑖  and 𝑋𝑘 are the same for the spdcf method. 

The above assembled 𝐶𝑋∗ is guaranteed valid as proven in [5] and demonstrated in [7] and [8]. 

Further note that, in general, if 𝐶𝑋𝑖 = 𝐶𝑋𝑘, then  (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑘
1/2

) = 𝐶𝑋𝑖.              (5.9.3-2) 

Also, if 𝐶𝑋𝑖 =

[
 
 
 
𝜎1𝑖

2 0

0 𝜎2𝑖

2
. . 0
. . 0

. . . .
0 0

. . . .

. . 𝜎𝑛𝑖
2
]
 
 
 
 and 𝐶𝑋𝑘 =

[
 
 
 
𝜎1𝑘

2 0

0 𝜎2𝑘

2
. . 0
. . 0

. . . .
0 0

. . . .

. . 𝜎𝑛𝑘
2

]
 
 
 
, then              (5.9.3-3) 

𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) [

𝜎1𝑖
𝜎1𝑘

0

0 𝜎2𝑖
𝜎2𝑘

. . 0

. . 0
. . . .
0    0     

. . . .

. . 𝜎𝑛𝑖
𝜎𝑛𝑘

] = [

𝜌(𝛿𝑡𝑖𝑘)𝜎1𝑖
𝜎1𝑘

0

0 𝜌(𝛿𝑡𝑖𝑘)𝜎2𝑖
𝜎2𝑘

. . 0

. . 0
. .                        . .
0            0

. . . .

. . 𝜌(𝛿𝑡𝑖𝑘)𝜎𝑛𝑖
𝜎𝑛𝑘

]. 

     

The spdcf method is compatible with the a priori modeling method for the generation of 𝐶𝑋 (see Section 

5.8.1).  The specific spdcf is selected based on desired correlation characteristics (see Section 5.9.3.2).   

There are no “approximation” errors associated with the spdcf method for representation and 

dissemination of the multi-variate error covariance matrix, other than those that may exist that directly 

correspond to the a priori modeling itself.  Also, it is not uncommon that all of the 𝐶𝑋𝑖 are modeled as 

diagonal matrices; hence, 𝐶𝑋𝑖𝑘 is also diagonal (see Equation (5.9.3-3)), making representation easy. 

Also, regarding a priori modeling, it is recommended that the following optional constraint be enforced 

for all relevant 𝑖, 𝑘 in Equation (5.9.3-1) to ensure “realism”:    

 𝜌(𝛿𝑡𝑖𝑘) ≤ 𝑠𝑞𝑟𝑡(𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖)/𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘)), if 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘) > 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖), 

𝜌(𝛿𝑡𝑖𝑘) ≤ 𝑠𝑞𝑟𝑡(𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘)/𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖)), if 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖),   

where 𝑡𝑟𝑎𝑐𝑒( ) is the sum of the diagonal elements of the enclosed matrix.              (5.9.3-4) 

This is done, if need be, by selection of the specific spdcf and/or (minimal) scaling of the desired 𝐶𝑋𝑖 via 

𝐶𝑋𝑖 → 𝑠 ∙ 𝐶𝑋𝑖, 𝑠 > 0.  Although the multi-state vector error covariance matrix 𝐶𝑋 is theoretically valid 

without the constraint satisfied, the constraint ensures an underlying error process that is statistically 

consistent with most real-world processes.  For example, if inter-event correlation is positive and 

reasonably high between two events, such as 0.8, their expected magnitude of error should be within 

20% of each other.  Finally, of course, the constraint is only applicable when the desired 𝐶𝑋𝑖 vary over 𝑖 =

1, . . , 𝑚.  See [11] for more details on this constraint and “real-world” processes. 

The spdcf method can also be used to approximate 𝐶𝑋 (actually the various 𝐶𝑋𝑖𝑘) generated by either a 

WLS estimator, Kalman Filter (KF), or some other estimator in order to minimize its size (bandwidth) for 

dissemination.  That is, a suitable spdcf may be fit, subject to the optional constraint (Equation (5.9.3-4)), 
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to the inter-event correlation implied by 𝐶𝑋 prior to dissemination.  If used to approximate the results of 

a KF, the spdcf is typically a function of delta time.  If used to approximate the results of a WLS estimator 

that solves for ground point locations (and possibly image support data adjustments), the spdcf is typically 

a function of spatial distance.  Once the spdcf is generated, 𝐶𝑋 is assembled as in Equation (5.9.3-1).  The 

resultant diagonal blocks 𝐶𝑋𝑖 are exact; however, the fidelity of the resultant cross-blocks 𝐶𝑋𝑖𝑘 is 

application-dependent (additional research is needed to quantify fidelity versus specific applications).  

Section 5.10.1 presents a specific example. 

5.9.3.1 Correlation subgroups  

The above description of the spdcf method assumed one spdcf applicable to all error components which 

are common to all individual state vectors.  Thus, assuming all individual state vector errors 𝜖𝑋𝑖 were 𝑛𝑥1, 

the 𝑛𝑥𝑛 block-diagonal 𝑖 (full, in general) of the multi-state vector error covariance matrix 𝐶𝑋 was equal 

to 𝐶𝑋𝑖, and the 𝑛𝑥𝑛 cross-block 𝑖-𝑗 (full, in general) was equal to 𝜌(𝛿𝑡𝑖𝑗) ∙ (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑗
1/2

), where the scalar 

correlation value 𝜌(𝛿𝑡𝑖𝑗) multiplied each element of the 𝑛𝑥𝑛 matrix ((𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑗
1/2

)). 

The above can be generalized to the use of multiple spdcf, one per “correlation subgroup”.  The  𝐶𝑋 above 

had one correlation subgroup that contained all 𝑛𝑥1 error components, and thus, all intra-state vector 

correlations and inter-state vector correlations were allowed, i.e., both 𝐶𝑋𝑖 and 𝐶𝑋𝑖𝑗 were full.  However, 

multiple correlation subgroups can be defined instead, each corresponding to a subset of the 𝑛 error 

components, such that the total number of error components sums to 𝑛. 

If subgroup 𝑘 has 𝑛𝑘 elements, it corresponds to an 𝑛𝑘𝑥𝑛𝑘 block-diagonal (full, in general, and symmetric) 

in 𝐶𝑋𝑖 and an 𝑛𝑘𝑥𝑛𝑘 cross-block (full, in general, not symmetric) in cross-block 𝐶𝑋𝑖𝑗.  The elements in two 

different correlation subgroups are assumed uncorrelated.  This is illustrated in Figure 5.9.3.1-1, which 

assumes three individual state vectors and two correlation subgroups.  The colors blue and light blue 

correspond to blocks and cross-blocks, respectively, for correlation subgroup 1.  The colors green and light 

green correspond to blocks and cross-blocks, respectively, for correlation subgroup 2.  The color white 

indicates no correlation, i.e., cross-blocks of zeros.  The color gray indicates error covariance matrix 

symmetry (intra-block-diagonal symmetry not shown). 

 

Figure 5.9.3.1-1: Color-coded assembled multi-state vector error covariance matrix  

corresponding to three individual state vectors and two correlation subgroups 
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Thus, when defining correlation subgroups there is always a trade-off: freedom to select a different spdcf 

per subgroup, but all subgroups must be modelled as uncorrelated with each other.  Together, these two 

attributes insure a valid assembled multi-state vector error covariance matrix. 

The above illustrated flexibility and generality using the spdcf method.  However, many applications are 

very straightforward.  For example, GPS receiver errors for a typical GPS receiver on a UAV [17] may be 

reasonably modeled as a first-order Gauss-Markov stochastic process (spdcf is a damped exponential) in 

a local tangent plane system (ENU) as follows using one correlation subgroup: 

𝐶𝑋𝑖 = [
22 0 0
0 22 0
0 0 22

] meters-squared, for all 𝑖,              (5.9.3.1-1) 

 and 𝐶𝑋𝑖𝑗 = 𝑒−|𝑡𝑖−𝑡𝑗|/300 [
22 0 0
0 22 0
0 0 22

] = [
𝑒−|𝑡𝑖−𝑡𝑗|/30022 0 0

0 𝑒−|𝑡𝑖−𝑡𝑗|/30022 0

0 0 𝑒−|𝑡𝑖−𝑡𝑗|/30022

](5.9.3.1-2) 

meters-squared for all 𝑖, 𝑗, and time in seconds. .   

Correspondingly, if three 3𝑥1 state vectors containing the position of the platform (GPS receiver) at times 

𝑡1, 𝑡2, and 𝑡3 are of interest, their 9𝑥9 multi-state vector error covariance matrix is equal to: 

𝐶𝑋 = [

𝐶𝑋1 𝐶𝑋12 𝐶𝑋13

. 𝐶𝑋2 𝐶𝑋23

. . 𝐶𝑋3

],                                                                                                                          (5.9.3.1-3) 

with entries populated per Equations (5.9.3.1-1) and (5.9.3.1-2). 

Note that the 𝐶𝑋𝑖  do not change with time (index 𝑖) in this example corresponding to a stationary process.  

A full 𝐶𝑋𝑖, instead of a diagonal matrix, is also allowed, although typically not applicable for this 

application. 

Further generalization 

The method of correlation sub-groups can be generalized even further – a different spdcf can be 

associated with each individual error component in the state vector regardless whether correlated with 

another error component or not, as documented in [9] and as summarized in Appendix D.  

5.9.3.2 Spdcf properties and examples 

Strictly positive definite correlation functions (spdcfs) and their applications for the generation of 𝐶𝑋 were 

described earlier.  They provide a practical method to specify inter-state vector correlations, and the 

computation of the cross-covariance matrix  𝐶𝑋𝑖𝑘 using the spdcf and matrix square roots as indicated in 

Sections 5.9.3 and 5.9.3.1.   

The use of spdcfs ensures that the resultant 𝐶𝑋 is a valid error covariance matrix for an arbitrary number 

of individual state vectors (aka “events”).  This is not true for other candidate correlation functions, even 

though they may seem reasonable, i.e., even if their evaluation satisfies the minimal requirements that  
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𝜌(𝛿𝑡 = 0) = 1 and −1 < 𝜌(𝛿𝑡 ≠ 0) < 1.  Reference [5] presents examples of spdcf as well as correlation 

functions that are not spdcf, where use of the latter results in invalid error covariance matrices. 

An spdcf that is a function of delta time, more precisely the absolute value of delta time, typically 

corresponds to a multi-variate stochastic process; such as a time series (collection) of individual state 

vectors 𝑋𝑖  (e.g., sensor pose as part of image support data), each with their own time of applicability 𝑡𝑖 

and errors 휀𝑋𝑖.  An spdcf that is a function of spatial distance typically corresponds to a multi-variate 

random field; such as a collection of individual state vectors 𝑋𝑖  (e.g. locations in a 3d Point Cloud), each 

with their own location 𝐿𝑖 and errors 휀𝑋𝑖.  For the case of 3d Point Clouds, 𝐿𝑖 = 𝑋𝑖.  (Of course, there can 

also be multiple spdcfs, one per correlation subgroup as described in Section 5.9.3.1.)   

There are many different families of spdcf, with a specific member of a family specified by the values of a 

few parameters.  Figure 5.9.3.2-1 illustrates members from four different spdcf families: damped 

exponential, damped cosine, piece-wise linear convex with a non-negative floor, and second order Gauss-

Markov.  In addition, any convex sum of an arbitrary number of members from an arbitrary number of 

spdcf families is an spdcf as well.  An a priori modeling application must select the appropriate family and 

then specify an appropriate member of that family which reflects the desired correlation characteristics. 

 

Figure 5.9.3.2-1: Examples of spdcf families (duplicate of Figure 4-9) 

Another spdcf family is the “CSM four parameter” family.  (See [19] for more details regarding this spdcf 

family as well as the Community Sensor Model or CSM.)  It is very general, with a specific member specified 

by the values of four parameters: 𝐴, 𝛼 (“alpha”), 𝛽(“beta”), and 𝑇. All of these parameters are unit-less 

except 𝑇, which has the same units as the independent variable 𝜏 (or 𝛿𝑡).  A specific spdcf member is 

defined as follows: 
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𝜌(𝜏) = 𝐴 [𝛼 +
(1−𝛼)(1+𝛽)

𝛽+𝑒𝜏/𝑇 ], where               (5.9.3.2-1)  

0 < 𝐴 ≤ 1; 0 ≤ 𝛼 < 1; 0 < 𝑇; 0 ≤ 𝛽 ≤ 10. 

Note that the symbol 𝐷 sometimes replaces the symbol 𝑇 when dealing with spatial correlation instead 

of temporal correlation. 

In addition, 𝜌(𝜏 = 0) ≡ 1, 𝜌(𝜏 = +𝑒𝑝𝑠𝑖𝑙𝑜𝑛) = 𝐴, where epsilon is a very small positive number, and 

𝜌(𝜏 → +∞) = 𝐴𝛼.  Note that 𝐴 < 1 can be considered as corresponding to the inclusion of an 

uncorrelated random error component, and that 0 < 𝛼 can be considered as corresponding to the 

inclusion of a random bias error component.  Also, the member {1,0,0,𝑇} corresponds to the familiar 

damped exponential  𝑒−𝜏/𝑇.   

Figure 5.9.3.2-2 presents examples of specific members from this family (the units of 𝜏 in these 

examples are seconds) with corresponding parameter values: {1,0,0,100} (blue), {1,0,10,50} (green), 

{1,0.5,0,100} (red), and {0.5,0,0,100} (teal). 

Figure 5.9.3.2-2: Specific members of the CSM “four parameter” family 

 

The spdcf’s independent variable 𝜏 can be a scalar, such as the absolute value of delta time, or multi-

dimensional, such as horizontal two-dimensional distance between two 3d ground points.  If the latter, 

the spdcf can also be separable, e.g., have the form 𝜌(𝛿𝑋) = 𝜌(𝛿𝑥, 𝛿𝑦) = 𝜌𝑥(𝛿𝑥) ∙ 𝜌𝑦(𝛿𝑦).  Figure 

5.9.3.2-3 presents an example of 𝜌(𝛿𝑥, 𝛿𝑦), where each of its composite functions 𝜌𝑥(𝛿𝑥) and 𝜌𝑦(𝛿𝑦) 

are members of the CSM four parameter family.  
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Figure 5.9.3.2-3: Example of a separable spdcf  

Note the different correlation characteristics in the x and the y directions.  Thus, for example, the multi-

state vector error covariance matrix for a field of 𝑚 3d ground control points could be represented by 𝑚 

unique (or the same-valued, if applicable) 3𝑥3 𝐶𝑋𝑖 , and eight parameters specifying the two composite 

functions.  That is, using this data, 𝐶𝑋 could be assembled as follows by a down-stream application in 

order to properly weight the control: 

𝐶𝑋 =

[
 
 
 𝐶𝑋1 𝜌𝑥(𝛿𝑥12) ∙ 𝜌𝑦(𝛿𝑦12) ∙ 𝐶𝑋1

1/2
𝐶𝑋2

1/2

. 𝐶𝑋2

. . 𝜌𝑥(𝛿𝑥1𝑚) ∙ 𝜌𝑦(𝛿𝑦1𝑚) ∙ 𝐶𝑋1
1/2

𝐶𝑋𝑚
1/2

. . 𝜌𝑥(𝛿𝑥2𝑚) ∙ 𝜌𝑦(𝛿𝑦2𝑚) ∙ 𝐶𝑋2
1/2

𝐶𝑋𝑚
1/2

. .

. .

. . . .
. 𝐶𝑋𝑚 ]

 
 
 

.        (5.9.3.2-2) 

In general, a separable spdcf can be a product of up to 𝑛 individual spdcf when distances are expressed in 

an n-dimensional metric space, such as the Cartesian Coordinate System 𝑅𝑛.  In addition, this coordinate 

system need not correspond to the coordinate system in which the individual errors 𝜖𝑋𝑖 are expressed.   

Thus, for example, if the 𝜖𝑋𝑖 correspond to errors in 3d ground locations expressed in a local tangent 

plane system, spdcf distances can be with respect to a rotated tangent plane. 

5.9.4 Bandwidth 

The following Table 5.9.4-1 summarizes the amount of data or “bandwidth” needed to disseminate the 

multi-state vector error covariance matrix for the three methods: direct, “A matrix”, and spdcf.  All of 

these methods explicitly disseminate the (upper triangular portion) of the individual 𝑛𝑥𝑛 𝐶𝑋𝑖 for all 

individual state vectors (aka “events”) of interest.  The direct method also explicitly disseminates all of the 

individual 𝑛𝑥𝑛 cross-covariance matrices 𝐶𝑋𝑖𝑘 for all individual state vectors of interest, whereas the other 
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two methods disseminate much less data for 𝐶𝑋𝑖𝑘  down-stream assembly.  The “A matrix” method 

requires more data than does the spdcf method, but its assembly of the 𝐶𝑋𝑖𝑘 is rigorous (exact) and not 

an application-dependent approximation as for the spdcf method.  Regardless, for a large number of 

individual state vectors (or “events”) 𝑚, both the “A matrix” and spdcf methods are practical, whereas 

the direct method may not be.  Both of these methods are relatively new and hopefully will facilitate the 

use of the multi-state vector error covariance matrix 𝐶𝑋 by various applications. 

Table 5.9.4-1: Bandwidth requirements vs. dissemination method 

 

As a specific example of the bandwidth needed for the various methods, Table 5.9.4-1 requirements were 

converted from (data per event, assuming 𝑚 events) to (total data required, summed over all 𝑚 events), 

as a function of number of events 𝑚 and presented in Figure 5.9.4-1.  The dimension 𝑛 was assumed equal 

to 3 for specificity, and could correspond to individual state vectors 𝑋𝑖  that correspond to 3d ground point 

locations, for example.  (If the dimension 𝑛 is increased, the differences in bandwidth growth would be 

even more dramatic than currently illustrated in Figure 5.9.4-1.)   

In addition, a data element (error covariance element) was assumed to require 8 bytes.  This assumption 

could be reduced if error covariance matrices were normalized, i.e., decomposed to the square-root of 

their diagonal elements along with all applicable correlation coefficients. 

Method

average # multi-event cov data 

elements per event for m events

# events Rigorous # event pairs Rigorous

Direct All Yes bandwidth limited Yes (n)(n+1)/2 + (m)(n)(n)

A matrix All Yes Unlimited Yes (n)(n+1)/2 + (n)(n)

Spdcf All Yes Unlimited Approx (n)(n+1)/2

Single event cov Cross-cov
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Figure 5.9.4-1: Bandwidth as a function of the number of individual state vectors or “events” for 

different methods to disseminate the (full) multi-state vector error covariance matrix 

5.10 Approximation of the Multi-State Vector Error Covariance Matrix 
In some applications, a low-bandwidth approximation of a large multi-state vector error covariance matrix 

may be desirable and feasible.  It may correspond to, for example, the solution error covariance matrix of 

a large batch WLS solution, which typically induces non-trivial intra-state vector correlation and inter-

state vector correlation, i.e., a full matrix. 

The allowed fidelity (degree of realism) of the approximation is application-dependent, but the 

approximation must yield a valid error covariance matrix.   

For example, if the corresponding individual state vectors correspond to 3d location of features or ground 

points, and their collective “footprint” corresponds to a region across horizontal-space (e.g., earth-

surface), such an approximation of the multi-state vector error covariance matrix may be preferred over 

a regional predictive CE/LE summary.  The latter consists of a collection of separate regions of CE and LE 

(average or typical) values, and regions of relative CE and relative LE values for point-pairs within regions 

and between regions.   

Such a CE/LE summary is not invalid as it stands, but if one were to reverse engineer an approximation of 

the original multi-state vector error covariance matrix from it for use in valid-added processing, such a 

covariance matrix would be low fidelity: its general form would be a diagonal matrix for all covariance 

blocks and covariance cross-blocks, with entries corresponding to x-errors and y-errors that are equal 

since there is no information regarding their differences in CE summaries.  More importantly, without 
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proper attention given to the possible contradictory summaries over different regions, the approximation 

of the multi-state vector error covariance matrix could easily be invalid (non-positive eigenvalues). 

A potential alternate approach for approximation of the original multi-state vector error covariance matrix 

is based on the spdcf method.  Assuming reasonable patterns of correlation between the errors between 

individual state vectors, results will be both higher fidelity than a predictive CE/LE summary and 

guaranteed a valid error covariance matrix.  The approximation will be low-bandwidth, and after its 

subsequent generation and dissemination, predictive CE/LE summaries can be generated from it in order 

to create a “stand-alone” product, if so desired.  Section 5.10.1 presents a summary of one such 

approximation. 

5.10.1 Spdcf Method: approximation example 

This section presents an example of spdcf-based approximation of a large 2244𝑥2244 multi-state vector 

error covariance matrix corresponding to 748 3d geolocations.  The approximation yielded a 1:560 

reduction in the data used to represent the original error covariance matrix.  Resultant predicted absolute 

accuracy for each geolocation was identical to that of the original error covariance matrix and the 

predicted relative accuracy for each geolocation-pair was a reasonable approximation.  Although resultant 

predicted relative accuracy was not a perfect approximation, it still yielded a 3:1 improvement relative to 

ignoring spatial correlation (cross-covariance) altogether.  Further details follow: 

 

A batch WLS adjustment was performed to correct or “register” 6 large stereo-pairs of WorldView-1 

imagery for improved absolute and relative accuracies of sensor support data as well as for any associated 

ground points extracted using the imagery.  Relative to the original (unadjusted) support data, the solution 

absolute accuracy improved by an approximate factor of 2.5.   No a priori control information was used in 

the solution. 

 

As part of the solution process, in addition to sensor support data corrections, 748 3d tie points were 

automatically measured between overlapping images and their geolocations solved for.  The tie point 

image measurements provide “linkage” between the images as well as corresponding ground points.  The 

tie point solutions and their 2244𝑥2244 portion of the overlap multi-state vector error covariance matrix 

were saved.  They are indicative of adjusted support data predicted accuracy and predicted relative 

accuracy and any subset can also be used as (derived) control points for other applications.  Their multi-

state error covariance matrix supports the appropriate weighting of these control points by the 

application.   

 

Figures 5.10.1-1 and 5.10.1-2 present corresponding (post-registration) predictive (absolute) CE and LE, 

respectively, of the tie point geolocations as they vary across the 60 nautical mile × 60 nautical mile 

region, with the 12 image footprints included.  These values were derived from the block-diagonals of the 

multi-state vector error covariance and, as per convention, correspond to 90% confidence since they were 

not designated otherwise. 
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Figure 5.10.1-1: CE from batch registration solution’s multi-state vector error covariance matrix 

 

 
Figure 5.10.1-2: LE from batch registration solution’s multi-state vector error covariance matrix 
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Appendix E presents further details, including how the spdcf-based approximation was made.  It also 

presents a comparison of resultant absolute and relative CE and LE based on the approximation to 

corresponding values based on the original error covariance matrix. 

 

The spdcf was a separable spdcf with a graphic example presented below in Figure 5.10.1-3 as a “preview” 

of fit results.  The resultant spdcf (black curve) is evaluated in the East-West horizontal direction and was 

fit to samples of correlation coefficients (colored “dots”) computed from the original error covariance 

matrix. 

 

 

 
Figure 5.10.1-3: Spdcf fit results 

   

5.10.2 Future bandwidth-reduction research and candidate methods 

Based on the promising results of Section 5.9.1, more research/applications for bandwidth reduction of a 

very large (multi-state vector) error covariance matrix are in order.  Three additional candidate methods 

are also identified and summarized below: 

Method 1: Partitioning 

Assume that individual state vectors correspond to 3d geolocations (points) and a large number of them 

are contained in a multi-state vector 𝑋 with an associated very large multi-state vector error covariance. 

All such point locations are contained within their collective horizontal AOI which is also covered by a 

minimum bounding rectangle (mbr).  This mbr is then divided into a set of 𝑚 > 1 overlapping partitions 

or sub-AOIs.  Each partition has its own error covariance matrix that corresponds to that portion(s) of the 
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original error covariance matrix that correspond to the points within the sub-AOI.  The points in each 

partition are assumed uncorrelated with all of the points in the other partitions, thus greatly reducing 

overall storage as the  cross-covariances between points in different partitions are no longer required.  

The overlap, or redundancy, between partitions ensures that any arbitrary application receives the 

appropriate full error covariance matrix, including cross-covariance, for all of its points of interest.   

This is illustrated in Figure 5.10.2-1 corresponding to the use of four partitions for ease of example. 

 

Figure 5.10.2-1: Very large error covariance matrix and its corresponding AOI partitioned with overlap 

An arbitrary application receives all points in the relevant partition, including its overlap, that are 

associated with the application’s footprint.  The application receives all such points and their associated 

error covariance matrix.   

In the above example (Figure 5.10.2-1), the relevant partition is partition 3.  If the applications footprint 

were up higher such that it was at least 50% over the black partition line, it would nominally be associated 

with partition 1.  If it was contained in both partitions, including overlap, the appropriate partition would 

be selected based on the number of points associated with the application’s footprint and their predicted 

accuracies via the partition’s error covariance matrix. 

Method 2: 

Another candidate method/research path is to “zero out” cross-covariance blocks when correlations are 

considered insignificant, e.g., absolute value less than 0.1 for all correlation coefficients in the cross-

covariance block.  As such, the cross-covariance blocks are no longer explicitly carried as part of the error 

covariance matrix and understood as containing all zeros.  This may also necessitate the addition of 
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minimal positive perturbations to the diagonal elements of the block-diagonal covariance matrices, such 

that the resultant multi-state vector error covariance matrix is valid.  In general, the above process is non-

trivial for high-fidelity representation considering all of the statistical interconnections between pairs of 

individual state vector errors. 

Figure 5.10.2-2 is a conceptual example of “block-zero” storage for such a bandwidth limited 

approximation.  This assumes that individual state vectors “closer” together are ordered sequentially and 

have higher correlations, although such an ordering is not required for reduced bandwidth.  Blocks consist 

of error covariance block-diagonals and cross-covariance blocks, the former always included, i.e., never 

zeroed. 

 

Figure 5.10.2-2: Block-zero storage: non-zero blocks (blue), zero blocks (light blue),  
transpose not included (light purple)  

This type of bandwidth reduction could play a significant role in the generation and storage of very large 

control point data bases (e.g., contiguous coverage of an entire country or countries), such as those 

potentially achievable via the Metric Information Network (MIN), described in references [10] and [24].  

Method 1 is also applicable, and is without theoretical issues. 

Method 3 

This method correspond to the representation of a very large error covariance matrix by the 

“interpolation” of a much smaller error covariance matrix that represents a grid of “anchor points” [29].  

The anchor points correspond to a subset of the original points.  The 3𝑥3 block diagonals of the smaller 

error covariance matrix are computed based on averages of the 3x3 error covariance of the original points 

that each anchor point represents.  Similarly, the 3𝑥3 cross- block diagonals are computed based on 

averages of the 3𝑥3 error cross-covariance of the original point-pairs that each anchor-point pair 

represents, and typically involves the use of spdcf approximations to insure a positive definite smaller 

error covariance matrix. 
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5.11 Overview of References by Section 
The following provides and overview of references applicable to the various sections of this document.  

Not all were referenced explicitly in the previous sections.  When multiple references are listed under a 

category, they are in approximate priority order. 

 Introduction (Section 5.1):  

o TGD 1 – “Accuracy and Predicted Accuracy in the NSG: Overview and Methodologies” 

o [15] – the important role of predictive statistics, in particular, the (multi-state vector) 

error covariance matrix, in a geospatial system 

o [6] - general overview to (image-based) geopositioning and the importance of accuracy 

predictions 

o [20] - general overview of predicted accuracy and uncertainty relative to GIScience 

 Predictive statistics, covariance matrix; definitions and properties (Sections 5.2 and 5.3): 

o [27] - primary probability/statistics reference for this document  

o [23] - primary linear algebra reference for this document  

o [21], [28], [31] - other related references 

 Error Ellipsoids (Section 5.4): 

o [15], [6] - general definition and equations for error ellipsoids 

o [32] - a proof that the error ellipsoid contains the maximum probability per volume 

o [23] – definition of matrix B>A and B >= matrix A and various related inverse and 

determinant properties 

o Covariance Intersection [25,33,35] 

 LE, CE, and SE (Section 5.5): 

o [6] - general definitions and approximation equations 

o [26],[22] - general definitions and alternate approximation equations 

 Multi-state vector error covariance matrix (Section 5.6): 

o [15] and [16] – overview and examples 

 Generic methods for generation of the multi-state vector error covariance matrix (Section 5.8) 

o [21], [16], and [12] stochastic Gauss-Markov 

o [20], [30], and [18] random field Gauss-Markov 

o [3] – effects of statistical significance and errors corresponding to “ground truth” 

(sample statistics) in remotely sensed data 

o [15] and [21] - overview, and an overview on estimators, respectively 

o [12] - use of sample statistics from stereo imagery to estimate spdcf 

o [13] and [17] - the “A matrix” for the Kalman Filter 

o [1] – extension of the “A matrix” of [13]  to the “S matrix” for smoothers 

 Generic methods for representation of the multi-state vector error covariance matrix (Section 

5.9) 

o [5], [7], [19], [9] - the spdcf and related assembly methods 

o [15] – error covariance matrix bandwidth reduction 

o [11] - spdcf assembly method constraint 

o [14] - matrix square roots in general for error covariance applications 
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o [8] and [19] - the CSM four parameter spdcf 

o [4], [2], and [34] - Geostatistics and its equivalent to the spdcf (variogram and 

correlogram) 

 Approximation of the multi-state vector error covariance matrix (Section 5.10) 

o [29] Anchor points 

o [10] and [24] the Metric Information Network 

6 Notes 

6.1 Intended Use 
This information and guidance document provides technical guidance to inform the development of 

geospatial data accuracy characterization for NSG GEOINT collectors, producers and consumers -- 

accuracy characterization as required to describe the trustworthiness of geolocations for defense and 

intelligence use and to support practices that acquire, generate, process, exploit, and provide geolocation 

data and information based on geolocation data.  This document is part of a series of complementary 

documents.  TGD 2a provides technical guidance for methods, practices, and algorithms in predictive 

statistics as of part of a series of information and guidance documents titled Accuracy and Predicted 

Accuracy in the NSG.  Other documents in this series address a more generalized overview of accuracy 

and predicted accuracy and additional topic specific technical guidance in sample statistics, specification 

and validation, estimators and quality control, Monte-Carlo simulation, and External Data and quality 

assessment.   
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 Additional Terms and Definitions 

There are a number of authoritative guides as well as existing standards within the NSG and Department 

of Defense for definitions of the identified additional terms used in this technical guidance document.  In 

many cases, the existing definitions provided by these sources are either too general or, in some cases, 

too narrow or dated by intended purposes contemporary to the document's development and 

publication.  The definitions provided in this document have been expanded and refined to explicitly 

address details relevant to the current and desired future use of accuracy in the NSG.  To acknowledge 

the basis and/or linage of certain terms listed in Section 3.2 and defined below, we first reference the 

following sources considered as either foundational or contributory: 

[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d]  ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by coordinates, 

as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, Version 

1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 
 

A priori - Relating to or denoting reasoning or knowledge that proceeds from theoretical deduction rather 

than from observation or experience.  [k]  

 For typical NSG accuracy and predicted accuracy applications, a priori refers to a mathematical 

statistical model of errors and/or the corresponding state vector containing those errors prior to 

its adjustment using additional information. 

http://www.oxforddictionaries.com/us/
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A posteriori - Relating to or denoting reasoning or knowledge that proceeds from observations or 

experiences to the deduction of probable causes. [k] 

 For typical NSG accuracy and predicted accuracy applications, a posteriori refers to a refined 

mathematical statistical model of errors and/or the corresponding state vector containing those 

errors following its adjustment using additional information. 

Absolute Horizontal Accuracy - The range of values for the error in an object’s horizontal metric 

geolocation value with respect to a specified geodetic horizontal reference datum, expressed as a radial 

error at the 90 percent probability level (CE). [b],[f],[j]  

 There are two types of absolute horizontal accuracy: predicted absolute horizontal accuracy is 

based on error propagation via a statistical error model; and measured absolute horizontal 

accuracy is an empirically derived metric based on sample statistics. 

 The term “horizontal accuracy” is assumed to correspond to “absolute horizontal accuracy”. 

 The 90% probability level (CE) is the default; 95% and 50% probability levels are optional, i.e., 

CE_95 and CE_50, respectively. 

Absolute Vertical Accuracy - The range of values for the error in an object’s metric elevation value with 

respect to a vertical reference datum, expressed as a linear error at the 90 percent probability level (LE). 

[b],[f],[j] 

 There are two types of absolute vertical accuracy: predicted absolute vertical accuracy is based 

on error propagation via a statistical error model; and measured absolute vertical accuracy is an 

empirically derived metric based on sample statistics.  

 The term “vertical accuracy” is assumed to correspond to “absolute vertical accuracy”. 

 The 90% probability level (LE) is the default; 95% and 50% probability levels are optional, i.e., 

LE_95 and LE_50, respectively. 

Bias Error - A category of error; an error that does not vary from one realization (trial or experimental 

outcome) to the other.  When error is represented as a random variable, random vector, stochastic 

process, or random field, a bias error corresponds to a non-zero mean-value. [f],[j]  

 Caution: a given realization of a mean-zero stochastic process with typical temporal correlation 

and over a reasonable finite time interval appears to have a non-zero sample mean-value; 

however, when sample statistics are taken over enough multiple (independent) realizations, the 

sample mean-value approaches zero in accordance with the true mean-value.  This characteristic 

extends to random fields as well. 

CE-LE Error Cylinder – A 3D cylinder made up of CE and LE such that there is between 81-90% probability 

that the 3d error resides within. 

Circular Error – See Scalar Accuracy Metrics. 
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Confidence Ellipsoid - An ellipsoid centered at an estimate of geolocation such that there is a 90% 

probability (or XX% if specified specifically) that the true geolocation is within the ellipsoidal boundary 

(ellipsoid interior).  A confidence ellipsoid is typically generated based on an error covariance matrix, an 

assumed mean-value of error equal to zero, and an assumed multi-variate Gaussian probability 

distribution of error in up to three spatial dimensions. 

Correlated Error - A category of errors; errors that are correlated with other errors, and typically 

represented in the NSG as a random vector, stochastic processes, or random field.  A correlated error is 

independent (uncorrelated) with itself and other errors from one realization (trial or experimental 

outcome) to the next.  However, within a given realization, it is correlated with other errors of interest:   

 If a random vector, the various elements (random variables) which make it up are correlated with 

each other (intra-state vector correlation). 

 If a stochastic process, the collection of random vectors which make up the stochastic process are 

correlated with each other (inter-state vector correlation).  That is, the elements of one random 

vector are correlated with the elements of another random vector, typically the closer the two 

random vectors in time, the greater the correlation.  A similar concept is applicable to random 

fields. 

Correlated Values - Values (of random variables) which are related by a statistical interdependence. For 

two random variables, this interdependence is represented by their covariance and typically expressed 

as a correlation coefficient – both have non-zero values.  This interdependence is relative to deviations 

about their respective mean-values.  [f] 

Covariance - A measure of the mutual variation of two random variables, where variations (deviations or 

dispersions) are about their respective mean-values. [b]  

Covariance Function - The cross-covariance matrix of two random vectors associated with a (same) 

stochastic process or random field as a function of their corresponding time or spatial locations, 

respectively.  If the stochastic process is (wide sense) stationary or the random field (wide sense) 

homogeneous, the cross-covariance matrix is a function of delta time or delta position, respectively.  

When evaluated at delta equal to zero, it equals the common covariance matrix.  

Covariance Intersection – A method to compute state vector estimates in a rigorous manner from initial 

estimates that are correlated by an unknown amount. 

Covariance Matrix - A symmetric, 𝑛𝑥𝑛 positive definite matrix populated with the variances and 

covariances of the random variables contained within a single, multi-component (𝑛𝑥1) state vector or 

random vector.  Note that if row 𝑖 ( 1 ≤ 𝑖 ≤ 𝑛) and all corresponding columns 𝑗 ( 1 ≤ 𝑗 ≤ 𝑛 ,𝑗 ≠ 𝑖) are 

zero, random variable 𝑖 is uncorrelated with all of the other random variables 𝑗.  [b] 

Cross-covariance Matrix - An 𝑛𝑥𝑚 matrix containing the covariance between each pair of elements 

(random variables) of an 𝑛𝑥1 random vector and an 𝑚𝑥1 random vector. 
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Deterministic Error - An error that is not random or dependent on “chance” – a “known” value, such as 

the specific realization of an error of an estimated geolocation as compared to “ground truth”, i.e., their 

difference, where “ground truth” is assumed error-free. 

Directed Percentile - The percentile of error along a specified direction, i.e., a directed XX percentile is an 

𝑛𝑥1 vector along a specified direction in 𝑛-dimensional space with a magnitude equal to the XX percentile 

of error along the specified direction.     

 For example, a directed 90th percentile of error is an 𝑛𝑥1 vector 𝑋𝑑𝑝 = 𝑟1,90𝜂, where its 

magnitude 𝑟1,90 is the 90th percentile of error and  𝜂 is an 𝑛𝑥1 unit vector in the specified 

direction of interest.  More specifically, 𝑝𝑟𝑜𝑏{|𝜂𝑇𝜖𝑋| ≤ 𝑟1,90} = 0.90, where 𝜖𝑋 is an arbitrary 

𝑛𝑥1 random error vector associated with the error process of interest.  𝜂𝑇𝜖𝑋 is a scalar equal to 

the component of error in the direction of interest.  

 The units of 𝑋, its error 𝜖𝑋, and  𝑋𝑑𝑝 are common and typically meters for each component or 

coordinate; hence, the units of 𝑟1,90 are meters.  

 A directed percentile of error is usually computed as a predictive statistics and based on the 

error covariance matrix of 𝑛𝑥1 errors assumed to be (multi-variate) Gaussian distributed. 

 

Distance Constant - The (separation) distance value such that the correlation coefficient for spatial 

correlation expressed as a decaying exponential equals 𝑒−1 ≅ 0.37 . 

Earth Centered Earth Fixed (ECEF) Cartesian Coordinate System - The Conventional Terrestrial Reference 

System (CTRS) with the following definition:  

1) Origin: at the geocenter (center of mass of the earth). 

2) z-axis: Directed toward the conventional definition of the North Pole, or more precise, towards 

the conventional terrestrial pole as defined by the International Earth Rotation Service (IERS). 

3) x-Axis: Passes through the point of zero longitude (approximately on the Greenwich meridian) as 

defined by the IERS. 

4) y-axis: forms a right-handed coordinate system with the x- and z-axes.      [l] 

Error (augmented definition) - The difference between the observed or estimated value and its ideal or 

true value. [f] There are a number of different categories of errors applicable to the NSG: Bias Error, 

Random Error, and Correlated Error.  In general, an error of interest may be a combination of errors from 

these categories. Their combination is typically represented as either a random variable, random vector, 

stochastic process, or random field: 

 A random variable represents a bias error plus a random error.  The former corresponds to the 

random variable’s mean-value, and if equal to zero, the random variable represents random error 

only, which is uncorrelated from one realization of the random variable to the next realization. 

 A random vector, stochastic process, and random field can represent all three categories of error.  

The random variables that make-up (are elements of) random vectors are uncorrelated from one 

realization to the next by definition.  However, within a given realization, they can also be 

correlated with each other:   



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
127 

o For a random vector per se, this correlation is also termed “intra-state vector correlation”. 

o For a stochastic process, which consists of a collection of random vectors, random 

variables in one random vector can also be correlated with random variables in another 

random vector, this is also termed “inter-state vector” correlation.  The same concept is 

applicable to random fields. 

Error Ellipsoid - An ellipsoid such that there is a 90% probability (or XX% if specified specifically) that 

geolocation error is within the ellipsoidal boundary (ellipsoid interior).  An error ellipsoid can be  

generated based on a predictive or sample-based  error covariance matrix, centered at an assumed 

predictive mean-value of error equal to zero or a sample-based mean-value of error not equal to zero, 

and an assumed multi-variate Gaussian probability distribution of error.  Errors are typically in three 

dimensions or less for corresponding visual-based rendering. 

Estimator - an algorithm/process which estimates the value of an nx1 state vector.  Its inputs are 

measurements related to the state vector and may include a priori information about the state vector.  

 An estimator is usually designed to be an optimal estimator relative to a cost function, such as the 

sum of weighted a posteriori measurement residuals, minimum mean-square solution error, etc.   

 Estimators are sequential or batch processes, and an optimal estimator should include both an 

estimate of the state vector and its predicted accuracy, usually an error covariance matrix, as 

output. A properly implemented MIG for a target’s geolocation is an optimal estimator.  

External Data - In the context of this document, External Data is geospatial data that is obtained by 

purchase or openly available public sources.  Outsourced data, commodities data, and crowd-sourced 

data are examples of External Data. 

Fusion - A process that combines or relates different sources of (typically independent) information. 

Gaussian (or Normal) probability distribution - a specific type of probability distribution for a random 

variable.  The distribution is specified by either a Gaussian probability density function or a Gaussian 

cumulative distribution function.  These in turn are completely characterized by the random variable’s 

mean-value and variance.   

 The Gaussian (probability) distribution is a common distribution that approximates many kinds of 

errors of interest to the NSG, and approximates the distribution for a sum of errors from different 

(non-Gaussian) distributions as well (Central Limit Theorem).  A Gaussian distribution 

corresponding to an nx1 random vector is termed a multi-variate Gaussian distribution. 

Geodetic Coordinate System - Coordinate system in which position is specified by geodetic latitude, 

geodetic longitude and (in the three-dimensional case) ellipsoidal height [d]. 

Ground Truth - the reference or (assumed) true value of a geolocation of a measured quantity (e.g. 

associated with an absolute geolocation, or a relative mensuration).   
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Homogeneous - A descriptor for a random field.  A random field is (wide-sense) homogeneous if 

corresponding (a priori) statistics are invariant to spatial location.  For example, the mean-value and 

covariance matrix corresponding to its random vectors are constant, and correlation between two 

corresponding but arbitrary random vectors in the same realization is a function of spatial distance 

between them, not the explicit spatial location of each. 

Horizontal Error - As applied to geospatial measurements and processes, horizontal error is typically 

observed in the 𝑥, 𝑦 plane of a local right-handed coordinate system where the 𝑥, 𝑦 plane is defined as 

tangent to the defined reference surface at the point of origin.  While horizontal error is the 𝑥 and 𝑦 

components of error, it may be generalized by its magnitude or 2D radial error.   

Inter-state Vector Correlation - The correlation between the errors (random variables) of the elements in 

two different state vectors. 

Intra-state Vector Correlation - The correlation between the errors (random variables) of different 

elements in the same state vector. 

Linear Error – See Scalar Accuracy Metrics. 

Local Tangent Plane Coordinate System (Coordinate System/Coordinate Reference System) - A local X,Y,Z 

right-handed rectangular coordinate system such that the origin is any point selected on a given reference 

ellipsoid, its XY plane is tangent to the reference ellipsoid at the point of origin, and the Y-axis is typically 

directed to the North Pole (e.g. an East-North-Up (ENU) system).  [a] 

Mean-Value - The expected value of a random variable.  Given a collected sample of measurements, the 

sample mean-value is the average of the values of the sample measurements.  The mean-value of a 

predictive error is typically assumed zero unless specifically stated otherwise.  If correctly modelled, the 

predictive mean-value should be closely approximated by the sample mean-value taken over a large 

number of independent and identically distributed samples.   

 The concept of mean-value readily extends to random vectors and is the vector of the mean-

values of the individual components or random variables making up the random vector.  It readily 

extends to stochastic processes and random fields as well, since they are collections of random 

vectors.  If (wide-sense) stationary or (wide-sense) homogeneous, respectively, their 

corresponding mean-value is a constant random vector mean-value. 

Metadata - Higher level or ancillary data describing a collection of data, e.g., the sensor support data 

corresponding to an image, which specifies corresponding sensor position, attitude, interior orientation 

parameters, etc. 

Monte-Carlo Simulation – A technique in which a large number of independent sample inputs for a system 

are randomly generated using an assumed a priori statistical model to analyze corresponding system 

output samples statistically and support derivation of a statistical model of the system output.  This 

technique is valuable for complex systems, non-linear systems, and those where no insight to internal 

algorithms is provided (“black box” systems). 
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Multi-image Geopositioning (MIG) - An optimal solution for a “target’s” geolocation (state vector) with 

reliable predicted accuracies based on the (weighted) measurements of the geolocation in one or more 

images.  A batch process which minimizes the sum of weighted a posteriori measurement residuals, where 

the latter may also include measurements equivalent to a priori estimates of geolocation.  MIG can also 

correspond to the simultaneous solution for the geolocation of multiple targets. In general, a MIG 

solution’s predicted accuracies correspond to or are derived from the solution’s a posteriori error 

covariance matrix.  

Multi-state Vector Error Covariance Matrix - An error covariance matrix corresponding to multiple state 

vector errors (random error vectors) “stacked” one on top of the other as one large state vector error 

(random error vector), e.g. to represent the position and attitude errors of multiple images’ adjustable 

parameter errors that impact the solution and predicted accuracy of a subsequent MIG.  The multi-state 

vector error covariance matrix is sometimes termed the joint covariance matrix for a collection of multiple 

state vector errors. 

Order Statistics - Nonparametric statistics performed on a set ordered by ascending magnitude of 

randomly sampled values.  Nonparametric statistics assume no a priori information about the underlying 

probability distribution of a random variable such as its mean-value, variance, or type of probability 

distribution function.  In the NSG, order statistics are used to compute scalar accuracy metrics from 

independent and identically distributed samples of error. 

Percentile - If a random variable’s probability (or sample) distribution is divided into 100 equal parts, the 

value of the random variable that corresponds to the percentage of the distribution equal to or below the 

specified percentile, e.g. the 90th percentile indicates the lowest sample value such that it is greater than 

the values of 90 percent of the samples.  

 A more formal definition is as follows: The 𝑝 percentile of a random variable 𝑥 is defined as the 

smallest number 𝑥𝑝 such that 𝑝 = 𝑝𝑟𝑜𝑏{𝑥 ≤ 𝑥𝑝}.  Thus, the probability distribution function 

(typically unknown) of the random variable 𝑥 evaluated at 𝑥𝑝 is equal to 𝑝.   𝑥𝑝 is a deterministic 

parameter with typically unknown value.   

Precision - The closeness to one another of a set of repeated observations of a random variable. [a], [f] 

 In terms of accuracy, precision is a measure of the repeatability of the underlying errors.  High 

accuracy implies high precision, but not vice versa.  For example, for an error represented as a 

random variable, high precision implies a small standard deviation, but high accuracy implies both 

a small standard deviation and a small or zero mean-value (or bias). 

Predicted Accuracy (augmented definition) –  The range of values for the error in a specific object’s metric 

value as expressed by a statistical or predictive error model, and may also be expressed as a probability if 

a specific probability distribution is specified or assumed, typically a Gaussian (or Normal) probability 

distribution. 
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In an NSG Geolocation System a typical object of interest is an arbitrary but specific 3d geolocation 

extracted by the system, with a corresponding definition of predicted accuracy as follows: 

 Predicted accuracy  

o A statistical description of the error in a specific geolocation extracted by the system.  The 

error is expressed as a 3d random vector and the statistical description consists primarily 

of an error covariance matrix of the random vector about a mean-value typically assumed 

equal to zero unless specifically stated otherwise.  The probability of error can also be 

computed if either a probability distribution is also specified or a multi-variate Gaussian 

probability distribution of error is assumed.  The probability of error is expressed as a 

probability or confidence ellipsoid at a specified probability or confidence level, 

respectively, and may also be expressed as CE90 and LE90. 

 The estimate of geolocation is usually performed by an estimator, such as a 

Weighted Least Squares estimator, with a corresponding solution error that is a 

function of measurement errors that are random from one solution or realization 

to the next as well as sensor-to-ground geometry at different geolocations.  

 The term “predicted” in predicted accuracy does not correspond to a prediction 

of accuracy applicable to the future since the corresponding error corresponds to 

a geolocation already generated or extracted by the NSG Geolocation System. 

  “Reliable predicted accuracy” is defined as predicted accuracy that is consistent 

with solution error(s). 

o An exception to the above is as follows: If so caveated, predicted accuracy can also 

correspond to a hypothetical extraction of a specific geolocation, such as that in support 

of sensor tasking.  The extraction makes use of specific, but hypothesized, sensor-to-

geolocation geometry, and the same extraction algorithm and a priori error models as 

would be used for an actual (operational) extraction.  No actual measurements are 

incorporated, and measurements are either simulated or not used at all.  If the latter, only 

predicted accuracy is computed by the extraction algorithm, not the geolocation. 

Predicted Accuracy Model - A collection of predictive statistics that characterize the geolocation accuracy 

or related sensor measurement accuracy in an arbitrary data/product of a specified type.  When a 

populated predicted accuracy model is assigned to a specific data/product, it becomes its predicted 

accuracy and is critical for optimal and informed use of the data/product.  In this series of technical 

guidance documents, a predicted accuracy model typically corresponds to External Data, and 

commodities data, in particular. 

There are two categories of predicted accuracy models: (1) Geolocation Product and (2) Geolocation Data, 

the latter subcategorized by Sensor-space and Measurement-space.  A predicted accuracy model is 

typically populated based on a corresponding populated accuracy assessment model. 

Principal Matrix Square Root - The principal matrix square root of a valid error covariance matrix is a valid 

error covariance matrix itself of the same dimension such that when multiplied with itself yields the 
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original error covariance matrix.  The calculation of principal matrix square root is based on Singular Value 

Decomposition. 

Probability density function (pdf) - A function that defines the probability distribution of a random 

variable.  If continuous, its integral is the (cumulative) probability distribution function. 

Probability distribution - Identifies the probability of a random variable’s values over an applicable range 

of values.  There are many different types of probability distributions: Gaussian or Normal, uniform, 

exponential, etc.  

 In most NSG applications for accuracy and predicted accuracy, the random variable and its 

probability distributions are assumed continuous. 

 The probability distribution is specified by either a probability density function or a (cumulative) 

probability distribution function; either based on an a priori model or sample statistics. 

Probability distribution function (cdf) - The (cumulative) probability distribution function defines the 

probability that a random variable’s value is less than or equal to a specified number in the interval [0,1]. 

Quality Assurance – The maintenance of a desired level of quality in a service or product, especially by 

means of attention to every stage of the process of delivery or production. [k] 

Quality Assessment – Processes and procedures intended to verify the reliability of provided data and 

processes, typically performed independent of collection or production.   For example, if ground truth is 

available, then comparison of actual (sample) errors to predicted errors (statistical values via rigorous 

error propagation) is a key part of this process. 

Radial Error - A generalization of two horizontal error components (𝑥, 𝑦) or three-dimensional (horizontal 

and vertical error components – 𝑥, 𝑦, 𝑧) error components to a distance value (magnitude) as measured 

along the radius of a circle or sphere, respectively.   

Random Error - A category of error; a measure of deviation from an ideal or true value which results from 

an accidental and unknown combination of causes and varies from one measurement to the next. Not 

deterministic.  For NSG applications, a random error is typically represented as a random variable, random 

vector, stationary process, or random field.  And more specifically, as deviations about their mean-values, 

the latter considered biases.  [b], [f] 

 The random error corresponding to a random variable or the random error corresponding to (the 

elements of) a random vector are independent (uncorrelated) from one realization to the next, 

by definition. 

 The random error corresponding to (the elements of) a random vector can also be correlated 

between the various elements for a given realization (intra-state vector correlation); hence this 

error is also a correlated error. 

 The random error corresponding to a stochastic process corresponds to the collection of random 

errors associated with the collection of random vectors making up the stochastic process.  

Random error is independent (uncorrelated) from one realization to the next.  However, within a 
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specific realization, the individual random error vectors are typically temporally correlated 

amongst themselves (inter-state vector correlation); hence, random error is also correlated error.  

This same characteristic extends to random fields. 

 The probability distribution for a random variable representing a random error is arbitrary – not 

necessarily Gaussian. 

Random Error Vector - An error represented by a nx1 random vector, and in the NSG, typically 

corresponds to the error in a state vector’s value.  The error itself could correspond to a combination of 

errors from different error categories: bias error, random error, and/or correlated error.  That is, the term 

“random error vector” does not imply the corresponding category of error is necessarily (only) “random 

error”. 

Random Field - A random field (RF) is a collection of random vectors (RV), parameterized by an N-

dimensional spatial vector q.  In general, two different random vectors from the same realization of the 

random field are correlated.  In the NSG, when error is represented by a random field, its corresponding 

statistics are specified by a statistical error model.  A general descriptor of a given random field is as 

follows: a (“scalar” or “multi-variate”) (“homogeneous” or “non-homogeneous”) “ND random field”.  

 Scalar (n=1) or multi-variate (n>1) refers to the number of elements n that each random vector 

contains and is sometimes described as “(nd)”, e.g. (2d) corresponds to 2 elements (random 

variables) per random vector. 

 Homogeneous, or more precisely wide-sense homogenous, and non-homogeneous refer to 

whether the corresponding statistics are invariant or vary, respectively, over spatial location q. 

 ND refers to the number of spatial dimensions (number of elements in q), e.g. 3D corresponds to 

3 spatial dimensions.  Each random vector corresponds to a unique value of q. 

 As an example of terminology, “a multi-variate homogeneous 3D random field” or more 

specifically “a homogeneous 3D random field (2d)” corresponds to a multi-variate homogeneous 

random field over 3 spatial dimensions (q is a vector with 3 elements).  The random vectors 

contain 2 elements. 

 Spatial dimensions are general.  For typical NSG applications, they correspond to some 

combination of geolocation directions and time.  Note that a stochastic process is also a random 

field with N=1. 

 In general, the collection of random vectors is infinite for a random field; however, only a finite 

subset are of interest for most applications, i.e., random vectors associated with a finite set of 

spatial locations. 

 For typical NSG applications, the spatial correlation of a random field is specified by one of more 

strictly positive definite correlation functions (spdcf) contained in the corresponding statistical 

error model. 

Random Variable - A variable whose value varies by chance, i.e., non-deterministic. Somewhat more 

formally, a random variable is a mapping from the space of experimental outcomes to a space of numbers.  

In the NSG, when error is represented by a random variable (a random vector with one component or 

element, i.e., n=1), its corresponding statistics are specified by a statistical error model.  
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 For most NSG applications, the space of experimental outcomes is already a number.  For 

example, the x-component of sensor position can be considered a random variable.  Equivalently, 

it can be defined as the true x-component of sensor position plus x-component of sensor position 

error, the former a deterministic (typically unknown) value and the latter a random variable.   

 A random variable is statistically characterized by its mean-value, variance, and (more completely) 

its probability density function (pdf).  The probability density function (pdf) is typically unknown 

and not included, but if needed for the calculation of probabilities, assumed Gaussian distributed 

with the pdf completely characterized by the mean-value and variance. 

Random Vector - A random vector (RV) is an nx1 vector which contains n random variables as components 

or elements.  In the NSG, when error is represented as a random vector, its corresponding statistics are 

specified by a statistical error model.  The corresponding random vector is also sometimes termed a 

random error vector.  

 The realization of a Random Vector corresponds to a specific value of the vector (components or 

elements) for a given event such as a trial or experiment.  Important descriptive statistics of a RV 

are its mean (vector) value and the error covariance matrix about the mean, and optionally, a 

multi-variate probability density function.  These statistics can be predictive or sample-based.   

Realization - For NSG accuracy and predicted accuracy applications, a specific trial or experimental 

outcome or independent sample involving a random error (category of error). 

Relative Horizontal Accuracy - The range of values for the error in the difference between two objects’ 

horizontal metric geolocation values with respect to a specified geodetic horizontal reference datum; e.g. 

expressed as a radial error at the 90 percent probability level (CE90). There are two types of relative 

horizontal accuracy: predicted relative horizontal accuracy is based on error propagation via a statistical 

error model(s); and measured relative horizontal accuracy is an empirically derived metric based on 

sample statistics. 

Relative Vertical Accuracy - The range of values for the error in the difference between two objects’ 

vertical metric geolocation values with respect to a specified geodetic vertical reference datum; e.g.  

expressed as a linear error at the 90 percent probability level (LE90). There are two types of relative 

vertical accuracy: predicted relative vertical accuracy is based on error propagation via a statistical error 

model(s); and measured relative vertical accuracy is an empirically derived metric based on sample 

statistics. 

Scalar Accuracy Metrics (augmented definition) - Convenient one-number summaries of geolocation 

accuracy and geolocation predicted accuracy expressed as a probability:   [b],[f], and [h]  

 Linear Error (LE) - LE is an unsigned value that corresponds to the length of a vertical line (segment) 

such that there is a 90% probability that the absolute value of vertical error resides along the line.  

If the line is doubled in length and centered at the target solution, there is a 90% probability that 

the true target vertical location resides along the line.  LE_XX corresponds to LE at the XX % 

probability level. 
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 Circular Error (CE) - CE is an unsigned value that corresponds to the radius of a circle such that 

there is a 90% probability that the horizontal error resides within the circle; or equivalently, if the 

circle is centered at the target solution, there is a 90% probability the true target horizontal 

location resides within the circle.  CE_XX corresponds to CE at the XX % probability level.  

 Spherical Error (SE) - SE is an unsigned value that corresponds to the radius of a sphere such that 

there is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered at 

the target solution, there is a 90% probability that the true target location resides within the 

sphere.  SE_XX corresponds to SE at the XX % probability level. 

For the above scalar accuracy metrics:  

 It is assumed that the underlying 𝑥-𝑦-𝑧 coordinate system is a local tangent plane system, i.e., 𝑥 

and 𝑦 are horizontal components and 𝑧 the vertical component.   

 CE-LE corresponds to the CE-LE error cylinder.  There is a probability between 81 to 90 percent 

that 3d radial error resides within the cylinder.  The former value corresponds to uncorrelated 

horizontal and vertical errors, the latter value to highly correlated horizontal and vertical errors. 

 LE_XX, CE_XX, and SE_XX (aka LEXX, CEXX, and SEXX, respectively) are also called XX percentiles 

for absolute vertical errors, horizontal radial errors, and spherical radial errors, respectively.  XX 

is expressed as an integer greater than zero and less than 100. 

Sensor support data - See “Metadata”. 

Spatial Correlation - The correlation between the elements (random variables) of two random vectors at 

two different spatial locations associated with the same realization of a random field. 

Spherical Error (SE) – See Scalar Accuracy Metrics. 

Standard Deviation - The square root of the variance of a random variable.  A measure of deviation or 

dispersion about the random variable’s mean-value. 

State Vector - A vector of parameters or variables that describe a system’s state. 

State Vector Error - A vector of errors corresponding to an estimate of a state vector relative to a (typically 

unknown) true state vector; a random vector of errors, or random error vector. 

Stationary - A descriptor for a stochastic process with corresponding (a priori) statistics invariant over 

time.  See homogeneous as well for random fields, which if corresponding to one spatial dimension are 

stochastic processes. 

Stochastic Process - A stochastic process (SP) is a collection of random vectors (RV), parameterized by a 

1D quantity, typically time.  For a given realization of the stochastic process, the individual random vectors 

are correlated with each other.  If the random vectors consist of one element or component (n=1), the 

stochastic process is sometimes called a scalar stochastic process, and if greater than one, a multi-variate 

stochastic process.  A stochastic process is also a random field with one spatial (or time) dimension, i.e., 
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N=1.  In the NSG, when error is represented as a stochastic process, its corresponding statistics are 

specified by a statistical error model. 

Strictly Positive Definite Correlation Function (spdcf) - A function which models the statistical correlation 

between random vectors (random variables), typically applied in the NSG to describe the temporal 

correlation and/or spatial correlation between various random vectors which are part of a stochastic 

process or random field, i.e., the spdcf is a function of delta time or delta distance (possibly in each of 

multiple directions) between random vectors.  The proper use of an spdcf ensures assembly of a valid 

multi-state vector error covariance matrix, i.e., positive definite and symmetric. 

Systematic Error - An error characteristic or error effect due to errors that are represented by random 

variables, random vectors, stochastic processes, or random fields.  For example, an effect on observations 

(samples) such that their pattern of magnitude and direction are consistent but not necessarily constant. 

[f], [j].  Such an effect can be associated with:    

 Error(s) represented by a stochastic process or random field which appear systematic across time 

or space, respectively, due to temporal or spatial correlation, respectively. 

 The error in a frame image-to-ground sensor model’s adjustable parameter for focal length.  This 

error is typically represented by a random variable, with a mean-value of zero and a constant 

variance, but its effect when projected to the ground appears as a systematic error across ground 

locations, e.g., it has a scaling effect which increases the closer the ground point to the image 

footprint’s boundary. 

Temporal Correlation - The correlation between the elements (random variables) of two random vectors 

at two different times associated with the same realization of a stochastic process. 

Time Constant - The delta time value such that the correlation coefficient for temporal correlation 

expressed as a decaying exponential equals 𝑒−1 ≅ 0.37 .        

Uncertainty - A lack of certainty; limited knowledge; unknown or imperfect information.  In terms of NSG 

applications, more general than the concepts of errors and accuracy, but sometimes used informally as a 

synonym.  Applies to predicted accuracy but not to empirical (sample-based) accuracy. 

Uncorrelated Error - At an intuitive level, an error that is statically unrelated to all other relevant errors.  

More precisely, if two random variables represent two uncorrelated errors (about their respective mean-

values), their covariance and their corresponding correlation coefficient are zero.  A random variable is 

uncorrelated (with itself) from one realization to the next by definition. This latter property is also true 

for the random variables making up random vectors, stochastic processes, and random fields.  However, 

these three representations typically include correlated errors within the same realization.   

Uncorrelated Values - Values (of random variables or errors) which are statistically unrelated. [f] This is 

represented for two random variables by their covariance with a value of zero. 
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Validation – The process of determining the degree to which a model is an accurate representation of the 

real world from the perspective of its intended use/s. In the NSG, this includes validation of accuracy and 

predicted accuracy specified capabilities. [e]   

Variance – The measure of the dispersion of a random variable about its mean-value, also the standard 

deviation squared. [b] 

Verification – The process of determining that an implemented model accurately represents the 

developer’s conceptual description and specifications.  [e] 

Vertical Error - As applied to geospatial measurements and processes, vertical error is a signed and one 

dimensional (linear) error value typically observed in the direction of the 𝑧-axis of a local right-handed 

coordinate system where the 𝑥, 𝑦 plane is defined as tangent to the defined reference surface at the point 

of origin and the 𝑧-axis is normal to the 𝑥, 𝑦 plane and positive in the up direction. 

WGS 84  - World Geodetic System 1984 – A documented and formally maintained global coordinate 

system which allows an unambiguous representation of positional information by providing the basic 

reference frame (coordinate system), geometric figure for the earth (ellipsoid), earth gravitational model, 

and means to relate positions on various geodetic datums and systems for DoD operations and 

applications. [g]  

 

 Pseudo-code for Rendering the Error Ellipsoid 

This appendix corresponds to Section 5.4.4 on “Rendering the error ellipsoid”; in particular, contains 

pseudo-code (MATLAB) for the rendering of an ellipse (B.1) and ellipsoid (B.2). 

B.1 Plot Error Ellipse 

function makeEllipse(covar,mCoord,valFlag,prob) 
%%%%% Creates ellipse based on provided covariance matrix 
%%%%%  
%%%%% Inputs: covar: 2x2 covariance matrix 
%%%%%         mCoord: mean coordinate value 
%%%%%         valFlag: flag indicating if fourth input is probability or %%%%%

        distance value 
%%%%%                  entered value can either be 'p' for probability or 
%%%%%                  'd' for distance value 
%%%%%         prob: desired probability or distance value for ellipsoid 

  
%%% Checks orientation of mean coordinate vector 
if size(mCoord) == [1 2] 
    mCoord  = transpose(mCoord); 
end 

  
%%% Checks entered flag to determine entered value type 
if strcmp(valFlag,'d') 
    d   = prob; 
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elseif strcmp(valFlag,'p') 
    %%% Checks entered probability to determine distance value 
    if prob == .5 
        d   = 1.1774; 
    elseif prob == .9 
        d   = 2.1460; 
    elseif prob == .95 
        d   = 2.4477; 
    elseif prob == .99 
        d   = 3.0349; 
    elseif prob == .999 
        d   = 3.7169; 
    else 
        fprintf('Entered probability is not one of the options.\n') 
        quit 
    end 
else 
    fprintf('Entered flag does not match possible values.\n') 
    quit 
end 

  
%%% Single Value Decomposition for Eigen values and vectors 
[u,s1]  = svd(covar); 

  
%%% Scales Eigen values by distance value 
ellAxes = d*sqrt(diag(s1)); 

  
%%% Rotation angle from Eigen space to XYZ space 
gam = atan2(u(2,1),u(1,1)); 

  
%%% Vector of angle values for use in polar coordinate calculation of 
%%% points on ellipse 
phi     = 0:2*pi/500:2*pi; 

  
%%% Calculation of coordinates on ellipse using polar coordinates and 
%%% rotating from Eigen space to XYZ space 
Xp(1,:) = ellAxes(1)*cos(phi)*cos(gam)-ellAxes(2)*sin(phi)*sin(gam)+mCoord(1); 
Xp(2,:) = ellAxes(1)*cos(phi)*sin(gam)+ellAxes(2)*sin(phi)*cos(gam)+mCoord(2); 

  
%%% Matrix of ellipse axes end points in Eigen space 
ellAxes = [ellAxes(1) 0;-ellAxes(1) 0;0 ellAxes(2);0 -ellAxes(2)]; 

  
%%% Rotates ellipse axes from Eigen space into XYZ space and translates 
%%% axes to mean coordinate 
ellAxes = transpose(u*transpose(ellAxes)+mCoord*ones(1,size(ellAxes,1))); 

  
%%% Plots ellipse and axes 
figure 
clf 
hold on 
plot(Xp(1,:),Xp(2,:),'g-','LineWidth',2) 
plot(ellAxes(1:2,1),ellAxes(1:2,2),'b-','LineWidth',2) 
plot(ellAxes(3:4,1),ellAxes(3:4,2),'b-','LineWidth',2) 
xlabel('X') 
ylabel('Y') 
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grid on 
axis equal 
legend('Ellipe','Ellipse Axes') 
hold off 
drawnow 

 

B.2 Plot Error Ellipsoid 

function makeEllipsoid(covar,mCoord,valFlag,prob) 
%%%%% Creates ellipsoid based on provided covariance matrix 
%%%%%  
%%%%% Inputs: covar: 3x3 covariance matrix 
%%%%%         mCoord: mean coordinate value 
%%%%%         valFlag: flag indicating if fourth input is probability or %%%%%

        distance value 
%%%%%                  entered value can either be 'p' for probability or 
%%%%%                  'd' for distance value 
%%%%%         prob: desired probability or distance value for ellipsoid 

  
%%% Checks orientation of mean coordinate vector 
if size(mCoord) == [1 3] 
    mCoord  = transpose(mCoord); 

end 

  
%%% Checks entered flag to determine entered value type 
if strcmp(valFlag,'d') 
    d   = prob; 
elseif strcmp(valFlag,'p') 
    %%% Checks entered probability to determine distance value 
    if prob == .5 
        d   = 1.5382; 
    elseif prob == .9 
        d   = 2.5003; 
    elseif prob == .95 
        d   = 2.7955; 
    elseif prob == .99 
        d   = 3.3682; 
    elseif prob == .999 
        d   = 4.0336; 
    else 
        fprintf('Entered probability is not one of the options.\n') 
        quit 
    end 
else 
    fprintf('Entered flag does not match possible values.\n') 
    quit 
end 

  
%%% Single Value Decomposition for Eigen values and vectors 
[u,s1]  = svd(covar); 

  
%%% Scales Eigen values by distance value 
ellAxes = d*sqrt(diag(s1)); 
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%%% Uses MATLAB function to generate points on ellipsoid in Eigen space 
[x,y,z] = ellipsoid(0,0,0,ellAxes(1),ellAxes(2),ellAxes(3),20); 

  
%%% Moves ellipsoid coordinates from three n+1 by n+1 matrices into a 
%%% (n+1)^2 by 3 matrix 
xyzEll  = zeros(size(x,1)^2,3); 
for k = 1:size(x,2) 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),1) = x(:,k); 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),2) = y(:,k); 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),3) = z(:,k); 
end 

  
%%% Rotates ellipsoid points from Eigen space into XYZ space and translates 
%%% points to mean coordinate 
ApertEllLoc = transpose(u*transpose(xyzEll)+mCoord*ones(1,size(xyzEll,1))); 
%%% Moves ellipsoid coordinates from a (n+1)^2 by 3 matrix into a n+1 by 
%%% n+1 by 3 matrix for plotting 
ApxyzEllLoc = zeros(size(x,1),size(x,2),3); 
for k = 1:size(x,2) 
    ApxyzEllLoc(:,k,1)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),1); 
    ApxyzEllLoc(:,k,2)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),2); 
    ApxyzEllLoc(:,k,3)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),3); 
end 

  
%%% Matrix of ellipsoid axes end points in Eigen space 
xyzAxes     = [ellAxes(1) 0 0;-ellAxes(1) 0 0; 
               0 ellAxes(2) 0;0 -ellAxes(2) 0; 
               0 0 ellAxes(3);0 0 -ellAxes(3)]; 

  
%%% Rotates ellipsoid axes from Eigen space into XYZ space and translates 
%%% axes to mean coordinate 
ApertAxeLoc = transpose(u*transpose(xyzAxes)+mCoord*ones(1,size(xyzAxes,1))); 

  
%%% Plots ellipsoid and axes 
figure 
clf 
hold on 
plot3(ApertAxeLoc(1:2,1),ApertAxeLoc(1:2,2),ApertAxeLoc(1:2,3),'b-

','LineWidth',2) 
surf(ApxyzEllLoc(:,:,1),ApxyzEllLoc(:,:,2),ApxyzEllLoc(:,:,3),'FaceColor',[0 1 

0],'EdgeColor',[0 .4 0]) 
plot3(ApertAxeLoc(3:4,1),ApertAxeLoc(3:4,2),ApertAxeLoc(3:4,3),'b-

','LineWidth',2) 
plot3(ApertAxeLoc(5:6,1),ApertAxeLoc(5:6,2),ApertAxeLoc(5:6,3),'b-

','LineWidth',2) 
alpha(.3)       % sets transparency of ellipsoid faces 
view(-15,40) 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
grid on 
axis equal 
legend('Ellipsoid Axes','Ellipsoid') 
hold off 
drawnow 
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 Predictive Scalar Accuracy Metrics: pseudo-code and 

supporting details  

This appendix corresponds to: 

C.1 Pseudo-Code for the various LE, CE, and SE computation methods presented in Section 5.5.1-5.5.3, 

respectively.   

C.2 Complete Set of SE Interpolation Tables referenced in Section 5.5.3; 

C.3 Solution Comparisons  - the various performance tests addressed in Sections 5.5.2.6 (CE) and 5.5.3.5 

(SE); 

C.1 Pseudo-code    

The pseudo-code (MATLAB) was run on the following “notebook” computer: Dell Precision T5810 

(desktop) with Intel® Xeon® CPU E5-1607 v3 @ 3.10GHz and 16GB of RAM.  The Computer has four cores, 

but programs are single threaded, i.e., no multi-threading was implemented.  MATLAB R2015a (Version 

8.5.0.197613) was used. 

C.1.1 Pseudo-code for the computation of LE 

Algorithm (5.5.1.1-2), i.e., the second algorithm listed in Section 5.5.1.1: 

function LEcal = LEerf(covar,prob) 
%%%%% Calculates linear error distance analytically 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         prob - probability that linear distance will be calculated to 
%%%%%  
%%%%% Outputs: LEcal - calculated linear error distance 

  
%%%%% Uses error function inverse to calculate linear error distance 
LEcal   = sqrt(covar)*sqrt(2)*erfinv(prob); 
end                                % ends LE erf function 

 

Algorithm (5.5.1.1-3): 

function LEcal = LEintegral(covar,mCoord,prob) 
%%%%% Calculates linear error distance analytically 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         mCoord - 1x1 mean coordinate of error 
%%%%%         prob - probability that linear distance will be calculated to 
%%%%%  
%%%%% Outputs: LEcal - calculated linear error distance 
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%%%%% Get inital very crude approximation 
if prob > .95                       % checks probability value 
    LEapprox    = 1.96*sqrt(covar); % approximation from variance value 
elseif prob <=0.95 && prob > .5     % checks probability value 
    LEapprox    = 1*sqrt(covar);    % approximation from variance value 
else                                % checks probability value 
    LEapprox    = .5*sqrt(covar);   % approximation from variance value 
end                                 % ends loop checking variance value 
LEapprox    = abs(mCoord)+LEapprox; % updates approximation 

  
%%%%% Calculate error radius 
% function handle for determining distance value 
initD   = @(D) (LEint(covar,mCoord,D)-prob)^2; 
% finds local minimum for solution of linear error distance 
LEcal   = fminsearch(initD,LEapprox); 
end                                % ends LE analytical function 

  
function LErad = LEint(covar,mCoord,D) 
%%%%% Returns the integral of the bivariate gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the Distance D 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         mCoord - 1x1 mean coordinate of error 
%%%%%         D - linear error distance 
%%%%%  
%%%%% Outputs: LEint – evaluated integral at current distance D 

  
%%%%% Function handle for the gaussian pdf 1D exponent 
expMult = @(z) (-1/2)*((z-mCoord).^2)/covar; 

  
%%%%% Function handle for the gaussian pdf equation to be integrated 
guasEq  = @(z) 1/(sqrt(2*pi)*sqrt(covar))*exp(expMult(z)); 

  
%%%%% Uses MATLAB function to integrate 
LErad   = integral(guasEq,-D,D); 
end                                 % ends LEint function 

 

C.1.2 Pseudo-code for the computation of CE 

Algorithm (5.5.2.1-1), i.e. the first algorithm listed in Section 5.5.2.1: 
function CEcal = CEtableV2(covar,prob) 
%%%%% Interpolates multiplier from table 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         prob - probability at which multiplier will be calculated 
%%%%%  
%%%%% Outputs: tableVal - interpolated multiplier from table 

  
%%%%% Table of values for CE interpolation 
CE  = [0.6745   1.6449  1.9600  2.5758  3.2905 
       0.6763   1.6456  1.9606  2.5763  3.2910 
       0.6820   1.6479  1.9625  2.5778  3.2921 
       0.6916   1.6518  1.9658  2.5803  3.2940 
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       0.7059   1.6573  1.9704  2.5838  3.2967 
       0.7254   1.6646  1.9765  2.5884  3.3003 
       0.7499   1.6738  1.9842  2.5942  3.3049 
       0.7779   1.6852  1.9937  2.6013  3.3104 
       0.8079   1.6992  2.0051  2.6099  3.3172 
       0.8389   1.7163  2.0190  2.6203  3.3252 
       0.8704   1.7371  2.0359  2.6326  3.3346 
       0.9021   1.7621  2.0564  2.6474  3.3459 
       0.9337   1.7915  2.0813  2.6653  3.3595 
       0.9651   1.8251  2.1111  2.6875  3.3759 
       0.9962   1.8625  2.1460  2.7151  3.3965 
       1.0271   1.9034  2.1858  2.7492  3.4227 
       1.0577   1.9472  2.2303  2.7907  3.4570 
       1.0880   1.9936  2.2791  2.8401  3.5018 
       1.1181   2.0424  2.3318  2.8974  3.5594 
       1.1479   2.0932  2.3881  2.9625  3.6310 
       1.1774   2.1460  2.4478  3.0349  3.7169]; 
 %%%%% Checks entered probability to determine column of table to use 
if prob == .5                               % checks entered probability 
    CEuse   = CE(:,1);                      % defines part of table to use 
elseif prob == .9                           % checks entered probability 
    CEuse   = CE(:,2);                      % defines part of table to use 
elseif prob == .95                          % checks entered probability 
    CEuse   = CE(:,3);                      % defines part of table to use 
elseif prob == .99                          % checks entered probability 
    CEuse   = CE(:,4);                      % defines part of table to use 
elseif prob == .999                         % checks entered probability 
    CEuse   = CE(:,5);                      % defines part of table to use 
else                                        % checks entered probability 
    fprintf('Entered probability is not one of the options for Table 

 Interpolation.\n') 
    quit                                    % quits program 
end                                         % ends loop checking probability 

  
eigVal  = sort(eig(covar));                 % calcs covariance eigen values 
if eigVal(1) <= 0                           % checks minimum eigen value 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit                                    % quits program 
end 
ratio   = sqrt(eigVal(1)/eigVal(2));        % ratio of eigen values 

  
tableVal = interp1(0:.05:1,CEuse,ratio); % linear interpolation from table 

  
CEcal   = sqrt(eigVal(2))*tableVal;         % calcs CE radius 
end                                         % ends function 

 

Algorithm (5.5.2.2-1): 

function CEcal = CECovSqrt(covar,mCoord,prob) 
%%%%% Calculates circular error radius using covariance square root 
%%%%% magnitude ordering 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         prob - probability that circular radius will be calculated to 
%%%%%  
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%%%%% Outputs: CEcal - calculated circular error radius 

  
%%%%% Check entered probability 
if prob < 0.1 
    fprintf('Entered probability is smaller than recommended limit.\n') 
end 

  
%%%%% Check eigen value ratio 
eigVal  = sort(eig(covar)); 
if eigVal(1) <= 0 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit 
elseif sqrt(eigVal(1)/eigVal(2)) < 0.0001 
    fprintf('Eigen value ratio is smaller than recommended limit.\n') 
end 

  
numSamp = 1e6;                      % number of samples to be evaluated 
X       = sqrtm(covar)*randn(2,numSamp);    % matrix of random samples 
X       = X+mCoord*ones(1,numSamp); % translates random samples by mean value 
mag     = sort(sum(X.^2));          % sorted magnitude of samples from origin 
numProb = floor(numSamp*prob); % number of samples for probability 

CEcal   = sum(sqrt(mag(numProb:numProb+1)))/2;  % circular radius 

end                                         % ends function 

 

Algorithm (5.5.2-2): 

function [CEcal,output] = CEintegral(covar,mCoord,prob) 
%%%%% Calculates circular error radius analytically 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: CEcal - calculated circular error radius 

  
%%%%% Convert covariance to eigen value space 
[eigVec,covar]  = svd(covar); 
mCoord          = transpose(eigVec)*mCoord; 

  
%%%%% Get inital very crude approximation 
if prob > .95                                   % checks probability value 
    CEapprox    = 2.25*sqrt(mean(diag(covar))); % approximation from mean 
elseif prob <=0.95 && prob > .5                 % checks probability value 
    CEapprox    = 1.25*sqrt(mean(diag(covar))); % approximation from mean 
else                                            % action based on probability 
    CEapprox    = .5*sqrt(mean(diag(covar)));   % approximation from mean 
end                                             % ends loop checking prob 
CEapprox    = sqrt(sum(mCoord.^2))+CEapprox;    % updates approximation 

  
%%%%% Calculate error radius 
initR   = @(R) (CEint(covar,mCoord,R)-prob)^2;  % function handle 

  
%%%%% Sets maximum number of iterations for search function. 
%%%%% Number of iterations could be optimized. 
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if prob < .95                           % checks probability 
    opt     = optimset('MaxIter',20);   % option for minimization function 
else                                    % checks probability 
    opt = optimset('MaxIter',22);       % option for minimization function 
end                                     % ends loop checking probability 
[CEcal(1,1),~,~,output] = fminsearch(initR,CEapprox,opt);   % finds radius 

  
%%%%% Prints warning statements about results based on iteration and 
%%%%% function counts. 
if output.iterations == 20 && prob < .95 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.iterations == 22 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.funcCount > 2*output.iterations 
    fprintf('Function count is greater than twice the iteration count.  ') 
    fprintf('Result most like not valid.\n') 
end 
end                        % ends CE integral function 

  
function CErad = CEint(covar,mCoord,R) 
%%%%% Returns the integral of the bivariate Gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the circle with Radius R 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         R - radius of circular error 
%%%%%  
%%%%% Outputs: CEint – evaluated integral at current radius R 

  
detCov  = det(covar);  % determinate of covariance matrix 
invCov  = inv(covar);         % inverse of covariance matrix 

  
%%%%% Function handle for the Gaussian pdf 2D exponent 
expMult = @(x,y) invCov(1,1)*(x-mCoord(1)).^2+... 
                 2*invCov(1,2)*(x-mCoord(1)).*(y-mCoord(2))+... 
                 invCov(2,2)*(y-mCoord(2)).^2; 

  
%%%%% Function handle for the Gaussian pdf equation to be integrated 
guasEq  = @(x,y) 1/((2*pi)*sqrt(detCov))*exp(-expMult(x,y)/2); 

  
%%%%% Function handles for integration limits 
ymin    = @(x) -sqrt(R^2-x.^2); % function for lower y limit 
ymax    = @(x)  sqrt(R^2-x.^2);     % function for upper y limit 

  
%%%%% Uses MATLAB function to integrate across the two variables 
CErad   = integral2(guasEq,-R,R,ymin,ymax); 
end                    % ends CEint function 

 

C.1.3 Pseudo-code for the computation of SE 

Algorithm (5.5.3.1-1), i.e., first algorithm listed in Section 5.5.3.1: 

function SEcal = SEtableV2(covar,prob) 
%%%%% Interpolates multiplier from table 
%%%%%  
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%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         prob - probability at which multiplier will be calculated 
%%%%%  
%%%%% Outputs: SEcal - calculated SE radius value 

  
%%%%% Tables of values for SE interpolation 
SE50    = []; 
SE90    = []; 
SE95    = []; 
SE99    = []; 
SE999   = []; 

  
%%%%% Checks entered probability to determine column of table to use 
if prob == .5                               % checks entered probability 
    SEuse   = SE50;                         % defines part of table to use 
elseif prob == .9                           % checks entered probability 
    SEuse   = SE90;                         % defines part of table to use 
elseif prob == .95                          % checks entered probability 
    SEuse   = SE95;                         % defines part of table to use 
elseif prob == .99                          % checks entered probability 
    SEuse   = SE99;                         % defines part of table to use 
elseif prob == .999                         % checks entered probability 
    SEuse   = SE999;                        % defines part of table to use 
else                                        % checks entered probability 
    fprintf('Entered probability is not one of the options for Table 

Iterpolation.\n') 
    quit                                    % quits program 
end                                         % ends loop checking probability 

  
eigVal  = sort(eig(covar));                 % calc covariance eigen values 
if eigVal(1) <= 0                           % checks min eigen value 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit                                    % quits program 
end                                         % ends loop checking eigen value 
r1      = sqrt(eigVal(2)/eigVal(3));        % ratio of eigen values 
r2      = sqrt(eigVal(1)/eigVal(3));        % ratio of eigen values 

  
rcVal   = 0:.05:1;                          % table sample points 

tabVal  = interp2(rcVal,rcVal,SEuse,r1,r2); % bi-linear interpolation 

  
SEcal   = sqrt(eigVal(3))*tabVal;           % calcs SE radius value 
end                                         % ends function 
 
Algorithm (5.5.3.2-1): 
function SEcal = SECovSqrt(covar,mCoord,prob) 
%%%%% Calculates spherical error radius using covariance square root 
%%%%% magnitude ordering 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: SEcal - calculated spherical error radius 

  
%%%%% Check entered probability 
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if prob < 0.1 
    fprintf('Entered probability is smaller than allowed limit.\n') 
    quit 
end 

  
%%%%% Check eigen value ratio 
eigVal  = sort(eig(covar)); 
if eigVal(1) <= 0 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit 
elseif sqrt(eigVal(1)/eigVal(3)) < 0.0001 

fprintf('Smallest Eigen value ratio is smaller than recommended limit.\n') 
end 

  
numSamp = 1e6;                 % number of samples to be evaluated 
X       = sqrtm(covar)*randn(3,numSamp); % matrix of random samples 
X       = X+mCoord*ones(1,numSamp); % translates random samples by mean value 
mag     = sort(sum(X.^2));          % sorted magnitude of samples from orgin 
numProb = floor(numSamp*prob);      % number of samples for current prob 
SEcal   = sum(sqrt(mag(numProb:numProb+1)))/2;  % spherical radius 
end                                             % ends function 

 

Algorithm (5.5.3-2): 

function [SEcal,output] = SEintegral(covar,mCoord,prob) 
%%%%% Calculates spherical error radius analytically 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: SEcal - calculated spherical error radius 

  
%%%%% Convert covariance to eigen value space 
[e1,covar]  = svd(covar); 
mCoord      = transpose(e1)*mCoord; 

  
%%%%% Get initial very crude approximation 
if prob > .95                                   % checks probability value 
    SEapprox    = 3*sqrt(mean(diag(covar))); % approximation 
elseif prob <=0.95 && prob > .5                 % checks probability value 
    SEapprox    = 2*sqrt(mean(diag(covar)));    % approximation 
else                                            % checks probability value 
    SEapprox    = sqrt(mean(diag(covar)));      % approximation 
end                                             % ends loop 
SEapprox    = sqrt(sum(mCoord.^2))+SEapprox;    % updates approximation 

  
%%%%% Calculate error radius 
initR   = @(R) (SEint(covar,mCoord,R)-prob)^2; 

  
%%%%% Sets maximum number of iterations for search function. 
%%%%% Number of iterations could be optimized. 
if prob < .95                           % checks probability 
    opt     = optimset('MaxIter',20);   % option for minimization function 
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else                                    % checks probability 
    opt = optimset('MaxIter',22);       % option for minimization function 
end                                     % ends loop checking probability 

  
[SEcal(1,1),~,~,output] = fminsearch(initR,SEapprox,opt); % spherical radius 

  
%%%%% Prints warning statements about results based on iteration and 
%%%%% function counts. 
if output.iterations == 20 && prob < .95 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.iterations == 22 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.funcCount > 2*output.iterations 
    fprintf('Function count is greater than twice the iteration count.  ') 
    fprintf('Result most like not valid.\n') 
end 
end                                % ends SE analytical function 

  
function SEint = SEint(covar,mCoord,R) 
%%%%% Returns the integral of the bivariate gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the circle with Radius R 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         R - radius of spherical error 
%%%%%  
%%%%% Outputs: SEcal – evaluated integral at current radius R 

  
detCov  = det(covar);             % determinate of covariance matrix 
invCov  = inv(covar);               % inverse of covariance matrix 

  
%%%%% Function handle for the gaussian pdf 3D exponent 
expMult = @(x,y,z) invCov(1,1)*(x-mCoord(1)).^2+... 
                   2*invCov(1,2)*(x-mCoord(1)).*(y-mCoord(2))+... 
                   2*invCov(1,3)*(x-mCoord(1)).*(z-mCoord(3))+... 
                   invCov(2,2)*(y-mCoord(2)).^2+... 
                   2*invCov(2,3)*(y-mCoord(2)).*(z-mCoord(3))+... 
                   invCov(3,3)*(z-mCoord(3)).^2; 

  
%%%%% Function handle for the gaussian pdf equation to be integrated 
guasEq  = @(x,y,z) 1/((2*pi)^(3/2)*sqrt(detCov))*exp(-expMult(x,y,z)/2); 

  
%%%%% Function handles for integration limits 
ymin    = @(x) -sqrt(R^2-x.^2);               % function for lower y limit 
ymax    = @(x)  sqrt(R^2-x.^2);                 % function for upper y limit 
zmin    = @(x,y) -sqrt(R^2-x.^2-y.^2);          % function for lower z limit 
zmax    = @(x,y) sqrt(R^2-x.^2-y.^2);           % function for upper z limit 

  
%%%%% Uses MATLAB function to integrate across the three variables 
SEint   = integral3(guasEq,-R,R,ymin,ymax,zmin,zmax); % preforms integration 
end                                                   % ends SEint function 

 

C.2 Complete Set of SE Interpolation Tables 
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This section of the appendix corresponds to Section 5.5.3 in the main body of this document. 
 
Assuming an appropriate digital copy of this document, the values in the following five tables can be 

copied by highlighting the desired cells and copying (right clicking and selecting copy or pressing Ctrl and 

C simultaneously).  Then pasting (right clicking and selecting paste or pressing Ctrl and V simultaneously) 

where desired.)  This allows for direct insertion into appropriate pseudo-code arrays/files. 

 

Table C.2-1: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.5, 𝑟1, 𝑟2) versus ratios r1 and r2  
 r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 0.6745 0.6763 0.6820 0.6916 0.7059 0.7254 0.7499 0.7779 0.8079 0.8389 0.8704 0.9021 0.9337 0.9651 0.9962 1.0271 1.0577 1.0880 1.1181 1.1479 1.1774 

0.05 0.6763 0.6782 0.6838 0.6934 0.7076 0.7271 0.7516 0.7795 0.8094 0.8404 0.8719 0.9035 0.9350 0.9664 0.9975 1.0283 1.0589 1.0891 1.1192 1.1489 1.1784 

0.10 0.6820 0.6838 0.6894 0.6989 0.7130 0.7324 0.7567 0.7844 0.8141 0.8449 0.8762 0.9077 0.9390 0.9703 1.0013 1.0320 1.0625 1.0926 1.1225 1.1522 1.1817 

0.15 0.6916 0.6934 0.6989 0.7084 0.7223 0.7414 0.7654 0.7927 0.8221 0.8526 0.8836 0.9147 0.9459 0.9768 1.0077 1.0381 1.0684 1.0984 1.1282 1.1578 1.1870 

0.20 0.7059 0.7076 0.7130 0.7223 0.7359 0.7546 0.7781 0.8048 0.8336 0.8636 0.8941 0.9248 0.9556 0.9862 1.0167 1.0469 1.0769 1.1067 1.1362 1.1655 1.1947 

0.25 0.7254 0.7271 0.7324 0.7414 0.7546 0.7727 0.7952 0.8211 0.8491 0.8783 0.9081 0.9382 0.9684 0.9986 1.0286 1.0584 1.0881 1.1174 1.1466 1.1756 1.2045 

0.30 0.7499 0.7516 0.7567 0.7654 0.7781 0.7952 0.8167 0.8414 0.8684 0.8966 0.9256 0.9549 0.9844 1.0140 1.0434 1.0728 1.1019 1.1309 1.1597 1.1883 1.2168 

0.35 0.7779 0.7795 0.7844 0.7927 0.8048 0.8211 0.8414 0.8651 0.8909 0.9181 0.9462 0.9748 1.0035 1.0324 1.0612 1.0899 1.1185 1.1470 1.1753 1.2035 1.2315 

0.40 0.8079 0.8094 0.8141 0.8221 0.8336 0.8491 0.8684 0.8909 0.9157 0.9420 0.9692 0.9970 1.0251 1.0533 1.0814 1.1096 1.1376 1.1656 1.1934 1.2211 1.2488 

0.45 0.8389 0.8404 0.8449 0.8526 0.8636 0.8783 0.8966 0.9181 0.9420 0.9675 0.9939 1.0210 1.0484 1.0760 1.1036 1.1313 1.1588 1.1863 1.2137 1.2409 1.2681 

0.50 0.8704 0.8719 0.8762 0.8836 0.8941 0.9081 0.9256 0.9462 0.9692 0.9939 1.0197 1.0462 1.0730 1.1002 1.1273 1.1545 1.1816 1.2086 1.2356 1.2625 1.2893 

0.55 0.9021 0.9035 0.9077 0.9147 0.9248 0.9382 0.9549 0.9748 0.9970 1.0210 1.0462 1.0722 1.0985 1.1251 1.1519 1.1788 1.2055 1.2322 1.2589 1.2854 1.3119 

0.60 0.9337 0.9350 0.9390 0.9459 0.9556 0.9684 0.9844 1.0035 1.0251 1.0484 1.0730 1.0985 1.1245 1.1508 1.1772 1.2037 1.2302 1.2567 1.2830 1.3093 1.3355 

0.65 0.9651 0.9664 0.9703 0.9768 0.9862 0.9986 1.0140 1.0324 1.0533 1.0760 1.1002 1.1251 1.1508 1.1767 1.2029 1.2291 1.2554 1.2817 1.3078 1.3339 1.3599 

0.70 0.9962 0.9975 1.0013 1.0077 1.0167 1.0286 1.0434 1.0612 1.0814 1.1036 1.1273 1.1519 1.1772 1.2029 1.2288 1.2549 1.2810 1.3070 1.3330 1.3590 1.3848 

0.75 1.0271 1.0283 1.0320 1.0381 1.0469 1.0584 1.0728 1.0899 1.1096 1.1313 1.1545 1.1788 1.2037 1.2291 1.2549 1.2807 1.3067 1.3325 1.3585 1.3843 1.4101 

0.80 1.0577 1.0589 1.0625 1.0684 1.0769 1.0881 1.1019 1.1185 1.1376 1.1588 1.1816 1.2055 1.2302 1.2554 1.2810 1.3067 1.3324 1.3582 1.3840 1.4098 1.4355 

0.85 1.0880 1.0891 1.0926 1.0984 1.1067 1.1174 1.1309 1.1470 1.1656 1.1863 1.2086 1.2322 1.2567 1.2817 1.3070 1.3325 1.3582 1.3840 1.4098 1.4356 1.4611 

0.90 1.1181 1.1192 1.1225 1.1282 1.1362 1.1466 1.1597 1.1753 1.1934 1.2137 1.2356 1.2589 1.2830 1.3078 1.3330 1.3585 1.3840 1.4098 1.4355 1.4612 1.4869 

0.95 1.1479 1.1489 1.1522 1.1578 1.1655 1.1756 1.1883 1.2035 1.2211 1.2409 1.2625 1.2854 1.3093 1.3339 1.3590 1.3843 1.4098 1.4356 1.4612 1.4869 1.5125 

1.00 1.1774 1.1784 1.1817 1.1870 1.1947 1.2045 1.2168 1.2315 1.2488 1.2681 1.2893 1.3119 1.3355 1.3599 1.3848 1.4101 1.4355 1.4611 1.4869 1.5125 1.5382 

 
Table C.2-2: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.9, 𝑟1, 𝑟2) versus ratios r1 and r2  

 r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 1.6449 1.6456 1.6479 1.6518 1.6573 1.6646 1.6738 1.6852 1.6992 1.7163 1.7371 1.7621 1.7915 1.8251 1.8625 1.9034 1.9472 1.9936 2.0424 2.0932 2.1460 

0.05 1.6456 1.6464 1.6487 1.6525 1.6581 1.6654 1.6745 1.6860 1.6999 1.7170 1.7378 1.7628 1.7922 1.8258 1.8632 1.9040 1.9478 1.9942 2.0429 2.0938 2.1466 

0.10 1.6479 1.6487 1.6509 1.6548 1.6604 1.6676 1.6769 1.6882 1.7021 1.7192 1.7400 1.7650 1.7944 1.8279 1.8652 1.9060 1.9497 1.9961 2.0448 2.0956 2.1483 

0.15 1.6518 1.6525 1.6548 1.6587 1.6642 1.6714 1.6806 1.6920 1.7059 1.7229 1.7436 1.7686 1.7979 1.8314 1.8687 1.9094 1.9530 1.9993 2.0479 2.0987 2.1512 

0.20 1.6573 1.6581 1.6604 1.6642 1.6697 1.6769 1.6861 1.6974 1.7113 1.7282 1.7489 1.7738 1.8030 1.8364 1.8735 1.9141 1.9576 2.0039 2.0523 2.1029 2.1555 

0.25 1.6646 1.6654 1.6676 1.6714 1.6769 1.6841 1.6932 1.7045 1.7183 1.7352 1.7558 1.7806 1.8097 1.8429 1.8799 1.9204 1.9638 2.0098 2.0581 2.1086 2.1610 

0.30 1.6738 1.6745 1.6769 1.6806 1.6861 1.6932 1.7023 1.7135 1.7273 1.7441 1.7646 1.7892 1.8182 1.8513 1.8881 1.9283 1.9715 2.0173 2.0654 2.1156 2.1678 

0.35 1.6852 1.6860 1.6882 1.6920 1.6974 1.7045 1.7135 1.7247 1.7383 1.7550 1.7755 1.7999 1.8286 1.8614 1.8981 1.9380 1.9809 2.0265 2.0743 2.1243 2.1762 

0.40 1.6992 1.6999 1.7021 1.7059 1.7113 1.7183 1.7273 1.7383 1.7519 1.7685 1.7887 1.8130 1.8414 1.8740 1.9102 1.9498 1.9923 2.0375 2.0850 2.1347 2.1862 

0.45 1.7163 1.7170 1.7192 1.7229 1.7282 1.7352 1.7441 1.7550 1.7685 1.7849 1.8049 1.8289 1.8569 1.8890 1.9248 1.9639 2.0060 2.0506 2.0977 2.1469 2.1981 

0.50 1.7371 1.7378 1.7400 1.7436 1.7489 1.7558 1.7646 1.7755 1.7887 1.8049 1.8245 1.8481 1.8757 1.9071 1.9422 1.9807 2.0221 2.0663 2.1127 2.1614 2.2120 

0.55 1.7621 1.7628 1.7650 1.7686 1.7738 1.7806 1.7892 1.7999 1.8130 1.8289 1.8481 1.8710 1.8979 1.9287 1.9630 2.0007 2.0413 2.0847 2.1304 2.1783 2.2282 

0.60 1.7915 1.7922 1.7944 1.7979 1.8030 1.8097 1.8182 1.8286 1.8414 1.8569 1.8757 1.8979 1.9240 1.9539 1.9873 2.0240 2.0637 2.1061 2.1510 2.1980 2.2472 

0.65 1.8251 1.8258 1.8279 1.8314 1.8364 1.8429 1.8513 1.8614 1.8740 1.8890 1.9071 1.9287 1.9539 1.9827 2.0151 2.0507 2.0894 2.1308 2.1746 2.2207 2.2689 

0.70 1.8625 1.8632 1.8652 1.8687 1.8735 1.8799 1.8881 1.8981 1.9102 1.9248 1.9422 1.9630 1.9873 2.0151 2.0464 2.0809 2.1185 2.1587 2.2015 2.2464 2.2936 

0.75 1.9034 1.9040 1.9060 1.9094 1.9141 1.9204 1.9283 1.9380 1.9498 1.9639 1.9807 2.0007 2.0240 2.0507 2.0809 2.1143 2.1506 2.1898 2.2314 2.2753 2.3214 

0.80 1.9472 1.9478 1.9497 1.9530 1.9576 1.9638 1.9715 1.9809 1.9923 2.0060 2.0221 2.0413 2.0637 2.0894 2.1185 2.1506 2.1858 2.2237 2.2642 2.3070 2.3520 

0.85 1.9936 1.9942 1.9961 1.9993 2.0039 2.0098 2.0173 2.0265 2.0375 2.0506 2.0663 2.0847 2.1061 2.1308 2.1587 2.1898 2.2237 2.2605 2.2998 2.3415 2.3854 

0.90 2.0424 2.0429 2.0448 2.0479 2.0523 2.0581 2.0654 2.0743 2.0850 2.0977 2.1127 2.1304 2.1510 2.1746 2.2015 2.2314 2.2642 2.2998 2.3380 2.3786 2.4213 

0.95 2.0932 2.0938 2.0956 2.0987 2.1029 2.1086 2.1156 2.1243 2.1347 2.1469 2.1614 2.1783 2.1980 2.2207 2.2464 2.2753 2.3070 2.3415 2.3786 2.4180 2.4597 

1.00 2.1460 2.1466 2.1483 2.1512 2.1555 2.1610 2.1678 2.1762 2.1862 2.1981 2.2120 2.2282 2.2472 2.2689 2.2936 2.3214 2.3520 2.3854 2.4213 2.4597 2.5003 
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Table C.2-3: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.95, 𝑟1, 𝑟2) versus ratios r1 and r2 
 r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 1.9600 1.9606 1.9625 1.9658 1.9704 1.9765 1.9842 1.9937 2.0051 2.0190 2.0359 2.0564 2.0813 2.1111 2.1460 2.1858 2.2303 2.2791 2.3318 2.3881 2.4478 

0.05 1.9606 1.9612 1.9632 1.9664 1.9711 1.9771 1.9848 1.9943 2.0058 2.0197 2.0365 2.0570 2.0819 2.1117 2.1466 2.1864 2.2309 2.2796 2.3324 2.3887 2.4482 

0.10 1.9625 1.9632 1.9651 1.9683 1.9729 1.9791 1.9867 1.9962 2.0077 2.0215 2.0383 2.0589 2.0837 2.1135 2.1483 2.1881 2.2325 2.2813 2.3339 2.3902 2.4498 

0.15 1.9658 1.9664 1.9683 1.9716 1.9762 1.9823 1.9899 1.9994 2.0108 2.0247 2.0415 2.0620 2.0868 2.1165 2.1513 2.1910 2.2354 2.2841 2.3367 2.3929 2.4524 

0.20 1.9704 1.9711 1.9729 1.9762 1.9808 1.9868 1.9945 2.0039 2.0153 2.0292 2.0459 2.0664 2.0912 2.1208 2.1555 2.1952 2.2394 2.2880 2.3406 2.3967 2.4561 

0.25 1.9765 1.9771 1.9791 1.9823 1.9868 1.9929 2.0005 2.0099 2.0213 2.0351 2.0518 2.0722 2.0969 2.1265 2.1611 2.2006 2.2448 2.2932 2.3457 2.4016 2.4609 

0.30 1.9842 1.9848 1.9867 1.9899 1.9945 2.0005 2.0081 2.0175 2.0288 2.0425 2.0592 2.0795 2.1041 2.1336 2.1682 2.2075 2.2515 2.2998 2.3520 2.4078 2.4669 

0.35 1.9937 1.9943 1.9962 1.9994 2.0039 2.0099 2.0175 2.0268 2.0381 2.0518 2.0683 2.0885 2.1131 2.1425 2.1767 2.2160 2.2598 2.3079 2.3598 2.4154 2.4743 

0.40 2.0051 2.0058 2.0077 2.0108 2.0153 2.0213 2.0288 2.0381 2.0493 2.0630 2.0795 2.0995 2.1239 2.1531 2.1873 2.2262 2.2697 2.3175 2.3692 2.4246 2.4831 

0.45 2.0190 2.0197 2.0215 2.0247 2.0292 2.0351 2.0425 2.0518 2.0630 2.0764 2.0929 2.1129 2.1371 2.1660 2.1999 2.2385 2.2816 2.3291 2.3804 2.4353 2.4935 

0.50 2.0359 2.0365 2.0383 2.0415 2.0459 2.0518 2.0592 2.0683 2.0795 2.0929 2.1092 2.1290 2.1529 2.1816 2.2150 2.2532 2.2959 2.3429 2.3936 2.4481 2.5058 

0.55 2.0564 2.0570 2.0589 2.0620 2.0664 2.0722 2.0795 2.0885 2.0995 2.1129 2.1290 2.1485 2.1722 2.2004 2.2333 2.2708 2.3129 2.3592 2.4093 2.4631 2.5202 

0.60 2.0813 2.0819 2.0837 2.0868 2.0912 2.0969 2.1041 2.1131 2.1239 2.1371 2.1529 2.1722 2.1953 2.2229 2.2551 2.2919 2.3332 2.3786 2.4279 2.4809 2.5371 

0.65 2.1111 2.1117 2.1135 2.1165 2.1208 2.1265 2.1336 2.1425 2.1531 2.1660 2.1816 2.2004 2.2229 2.2497 2.2810 2.3168 2.3570 2.4014 2.4497 2.5017 2.5570 

0.70 2.1460 2.1466 2.1483 2.1513 2.1555 2.1611 2.1682 2.1767 2.1873 2.1999 2.2150 2.2333 2.2551 2.2810 2.3112 2.3460 2.3850 2.4281 2.4752 2.5259 2.5801 

0.75 2.1858 2.1864 2.1881 2.1910 2.1952 2.2006 2.2075 2.2160 2.2262 2.2385 2.2532 2.2708 2.2919 2.3168 2.3460 2.3794 2.4170 2.4589 2.5046 2.5539 2.6067 

0.80 2.2303 2.2309 2.2325 2.2354 2.2394 2.2448 2.2515 2.2598 2.2697 2.2816 2.2959 2.3129 2.3332 2.3570 2.3850 2.4170 2.4533 2.4937 2.5379 2.5858 2.6371 

0.85 2.2791 2.2796 2.2813 2.2841 2.2880 2.2932 2.2998 2.3079 2.3175 2.3291 2.3429 2.3592 2.3786 2.4014 2.4281 2.4589 2.4937 2.5325 2.5751 2.6214 2.6713 

0.90 2.3318 2.3323 2.3339 2.3367 2.3406 2.3457 2.3520 2.3598 2.3692 2.3804 2.3936 2.4093 2.4279 2.4497 2.4752 2.5046 2.5379 2.5751 2.6162 2.6609 2.7091 

0.95 2.3881 2.3887 2.3902 2.3929 2.3967 2.4016 2.4078 2.4154 2.4246 2.4353 2.4481 2.4631 2.4809 2.5017 2.5259 2.5539 2.5858 2.6214 2.6609 2.7040 2.7506 

1.00 2.4478 2.4482 2.4498 2.4524 2.4561 2.4609 2.4669 2.4743 2.4831 2.4935 2.5058 2.5202 2.5371 2.5570 2.5801 2.6067 2.6371 2.6713 2.7091 2.7506 2.7955 

 
Table C.2-4: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.99, 𝑟1, 𝑟2) versus ratios r1 and r2  

 r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 2.5758 2.5763 2.5778 2.5803 2.5838 2.5884 2.5942 2.6013 2.6099 2.6203 2.6326 2.6474 2.6653 2.6875 2.7151 2.7492 2.7907 2.8401 2.8974 2.9625 3.0349 

0.05 2.5763 2.5768 2.5783 2.5808 2.5842 2.5888 2.5947 2.6018 2.6105 2.6207 2.6331 2.6479 2.6658 2.6880 2.7155 2.7496 2.7912 2.8405 2.8979 2.9629 3.0353 

0.10 2.5778 2.5783 2.5798 2.5822 2.5857 2.5903 2.5962 2.6033 2.6118 2.6222 2.6345 2.6493 2.6672 2.6894 2.7169 2.7510 2.7925 2.8418 2.8992 2.9642 3.0365 

0.15 2.5803 2.5808 2.5822 2.5847 2.5882 2.5928 2.5986 2.6057 2.6143 2.6246 2.6369 2.6516 2.6696 2.6917 2.7193 2.7533 2.7948 2.8441 2.9014 2.9664 3.0386 

0.20 2.5838 2.5842 2.5857 2.5882 2.5917 2.5963 2.6021 2.6092 2.6178 2.6281 2.6403 2.6551 2.6730 2.6951 2.7226 2.7566 2.7980 2.8473 2.9045 2.9694 3.0416 

0.25 2.5884 2.5888 2.5903 2.5928 2.5963 2.6008 2.6067 2.6138 2.6224 2.6326 2.6448 2.6595 2.6775 2.6995 2.7270 2.7609 2.8023 2.8515 2.9086 2.9734 3.0454 

0.30 2.5942 2.5947 2.5962 2.5986 2.6021 2.6067 2.6125 2.6195 2.6281 2.6383 2.6505 2.6652 2.6831 2.7051 2.7325 2.7664 2.8077 2.8567 2.9137 2.9784 3.0503 

0.35 2.6013 2.6018 2.6033 2.6057 2.6092 2.6138 2.6195 2.6266 2.6351 2.6453 2.6575 2.6722 2.6900 2.7120 2.7393 2.7731 2.8143 2.8632 2.9200 2.9845 3.0563 

0.40 2.6099 2.6105 2.6118 2.6143 2.6178 2.6224 2.6281 2.6351 2.6436 2.6539 2.6660 2.6806 2.6984 2.7202 2.7475 2.7812 2.8222 2.8710 2.9276 2.9919 3.0635 

0.45 2.6203 2.6207 2.6222 2.6246 2.6281 2.6326 2.6383 2.6453 2.6539 2.6639 2.6761 2.6906 2.7083 2.7302 2.7573 2.7909 2.8317 2.8803 2.9367 3.0007 3.0719 

0.50 2.6326 2.6331 2.6345 2.6369 2.6403 2.6448 2.6505 2.6575 2.6660 2.6761 2.6882 2.7027 2.7203 2.7421 2.7691 2.8024 2.8431 2.8913 2.9474 3.0110 3.0819 

0.55 2.6474 2.6479 2.6493 2.6516 2.6551 2.6595 2.6652 2.6722 2.6806 2.6906 2.7027 2.7171 2.7347 2.7563 2.7831 2.8163 2.8566 2.9045 2.9601 3.0233 3.0937 

0.60 2.6653 2.6658 2.6672 2.6696 2.6730 2.6775 2.6831 2.6900 2.6984 2.7083 2.7203 2.7347 2.7522 2.7736 2.8003 2.8330 2.8729 2.9203 2.9753 3.0378 3.1075 

0.65 2.6875 2.6880 2.6894 2.6917 2.6951 2.6995 2.7051 2.7120 2.7202 2.7302 2.7421 2.7563 2.7736 2.7949 2.8212 2.8535 2.8927 2.9393 2.9935 3.0552 3.1240 

0.70 2.7151 2.7155 2.7169 2.7193 2.7226 2.7270 2.7325 2.7393 2.7475 2.7573 2.7691 2.7831 2.8003 2.8212 2.8469 2.8786 2.9170 2.9625 3.0156 3.0760 3.1436 

0.75 2.7492 2.7496 2.7510 2.7533 2.7566 2.7609 2.7664 2.7731 2.7812 2.7909 2.8024 2.8163 2.8330 2.8535 2.8786 2.9093 2.9465 2.9908 3.0423 3.1012 3.1672 

0.80 2.7907 2.7912 2.7925 2.7948 2.7980 2.8023 2.8077 2.8143 2.8222 2.8317 2.8431 2.8566 2.8729 2.8927 2.9170 2.9465 2.9823 3.0248 3.0746 3.1316 3.1956 

0.85 2.8401 2.8405 2.8418 2.8441 2.8473 2.8515 2.8567 2.8632 2.8710 2.8803 2.8913 2.9045 2.9203 2.9393 2.9625 2.9908 3.0248 3.0655 3.1131 3.1677 3.2294 

0.90 2.8974 2.8978 2.8992 2.9014 2.9045 2.9086 2.9137 2.9200 2.9276 2.9367 2.9474 2.9601 2.9753 2.9935 3.0156 3.0423 3.0746 3.1131 3.1582 3.2102 3.2691 

0.95 2.9625 2.9629 2.9642 2.9664 2.9694 2.9734 2.9784 2.9845 2.9919 3.0007 3.0110 3.0233 3.0378 3.0552 3.0760 3.1012 3.1316 3.1677 3.2102 3.2594 3.3154 

1.00 3.0349 3.0353 3.0365 3.0386 3.0416 3.0454 3.0503 3.0563 3.0635 3.0719 3.0819 3.0936 3.1075 3.1240 3.1436 3.1672 3.1956 3.2294 3.2691 3.3154 3.3682 
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Table C.2-5: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.999, 𝑟1, 𝑟2) versus ratios r1 and r2  
 r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 3.2905 3.2910 3.2921 3.2940 3.2967 3.3003 3.3049 3.3104 3.3172 3.3252 3.3346 3.3459 3.3595 3.3759 3.3965 3.4227 3.4570 3.5018 3.5594 3.6310 3.7169 

0.05 3.2910 3.2913 3.2924 3.2944 3.2972 3.3007 3.3053 3.3108 3.3175 3.3255 3.3350 3.3463 3.3599 3.3763 3.3968 3.4231 3.4573 3.5022 3.5598 3.6314 3.7173 

0.10 3.2921 3.2924 3.2936 3.2955 3.2982 3.3019 3.3064 3.3120 3.3182 3.3267 3.3361 3.3475 3.3610 3.3774 3.3979 3.4242 3.4584 3.5032 3.5608 3.6324 3.7183 

0.15 3.2940 3.2944 3.2955 3.2975 3.3002 3.3038 3.3084 3.3139 3.3206 3.3285 3.3380 3.3493 3.3629 3.3793 3.3998 3.4260 3.4603 3.5050 3.5626 3.6341 3.7199 

0.20 3.2967 3.2972 3.2982 3.3002 3.3029 3.3065 3.3111 3.3166 3.3233 3.3313 3.3407 3.3520 3.3655 3.3820 3.4025 3.4287 3.4629 3.5076 3.5651 3.6366 3.7224 

0.25 3.3003 3.3007 3.3019 3.3038 3.3065 3.3101 3.3147 3.3202 3.3269 3.3348 3.3444 3.3556 3.3691 3.3856 3.4060 3.4322 3.4663 3.5111 3.5685 3.6399 3.7256 

0.30 3.3049 3.3052 3.3064 3.3083 3.3111 3.3147 3.3192 3.3247 3.3314 3.3394 3.3488 3.3600 3.3736 3.3900 3.4104 3.4365 3.4707 3.5153 3.5726 3.6440 3.7296 

0.35 3.3104 3.3108 3.3120 3.3139 3.3166 3.3202 3.3247 3.3303 3.3370 3.3449 3.3543 3.3655 3.3790 3.3954 3.4158 3.4419 3.4760 3.5205 3.5778 3.6490 3.7344 

0.40 3.3172 3.3174 3.3187 3.3205 3.3233 3.3269 3.3314 3.3370 3.3436 3.3515 3.3609 3.3721 3.3856 3.4019 3.4223 3.4483 3.4823 3.5268 3.5840 3.6550 3.7403 

0.45 3.3252 3.3254 3.3267 3.3286 3.3313 3.3348 3.3394 3.3449 3.3515 3.3594 3.3688 3.3800 3.3934 3.4097 3.4301 3.4560 3.4900 3.5343 3.5913 3.6622 3.7473 

0.50 3.3346 3.3349 3.3361 3.3380 3.3407 3.3444 3.3488 3.3543 3.3609 3.3688 3.3782 3.3894 3.4027 3.4190 3.4393 3.4652 3.4990 3.5433 3.6001 3.6707 3.7554 

0.55 3.3459 3.3463 3.3474 3.3493 3.3520 3.3556 3.3600 3.3655 3.3721 3.3800 3.3894 3.4004 3.4138 3.4301 3.4503 3.4761 3.5099 3.5539 3.6105 3.6807 3.7651 

0.60 3.3595 3.3598 3.3609 3.3629 3.3655 3.3691 3.3736 3.3790 3.3856 3.3934 3.4027 3.4138 3.4271 3.4433 3.4635 3.4892 3.5228 3.5667 3.6228 3.6927 3.7765 

0.65 3.3759 3.3763 3.3774 3.3793 3.3819 3.3856 3.3900 3.3954 3.4019 3.4097 3.4190 3.4301 3.4433 3.4594 3.4795 3.5052 3.5386 3.5821 3.6378 3.7070 3.7901 

0.70 3.3965 3.3966 3.3979 3.3998 3.4024 3.4060 3.4104 3.4158 3.4223 3.4301 3.4393 3.4503 3.4635 3.4795 3.4995 3.5250 3.5581 3.6011 3.6561 3.7244 3.8064 

0.75 3.4227 3.4230 3.4242 3.4260 3.4286 3.4322 3.4365 3.4419 3.4483 3.4561 3.4652 3.4761 3.4892 3.5052 3.5248 3.5502 3.5827 3.6250 3.6789 3.7458 3.8264 

0.80 3.4570 3.4573 3.4584 3.4602 3.4628 3.4663 3.4706 3.4760 3.4823 3.4900 3.4990 3.5099 3.5228 3.5386 3.5580 3.5827 3.6145 3.6555 3.7078 3.7729 3.8512 

0.85 3.5018 3.5022 3.5032 3.5051 3.5076 3.5111 3.5153 3.5205 3.5268 3.5343 3.5433 3.5539 3.5667 3.5821 3.6008 3.6250 3.6555 3.6948 3.7448 3.8071 3.8826 

0.90 3.5594 3.5597 3.5608 3.5626 3.5651 3.5684 3.5726 3.5778 3.5840 3.5913 3.6001 3.6105 3.6228 3.6377 3.6560 3.6789 3.7078 3.7448 3.7919 3.8507 3.9223 

0.95 3.6310 3.6313 3.6323 3.6341 3.6367 3.6399 3.6440 3.6490 3.6550 3.6622 3.6707 3.6807 3.6927 3.7070 3.7244 3.7458 3.7729 3.8071 3.8507 3.9053 3.9720 

1.00 3.7169 3.7173 3.7182 3.7200 3.7224 3.7256 3.7296 3.7344 3.7403 3.7473 3.7554 3.7651 3.7765 3.7901 3.8064 3.8264 3.8512 3.8826 3.9223 3.9720 4.0332 

 

C.3 Assessment of the Performance of CE and SE Computational Methods 

The results of Table 5.5.2.6-1 (Performance Summary for CE_XX Calculations) in the main body of this 

document are empirical and based on thousands of simulation runs (“realizations”), each run 

corresponding to an arbitrarily selected (full) 2𝑥2 error covariance matrix, and if applicable, an arbitrary 

2𝑥1 mean-value and an arbitrary probability level within the interval [0.1,0.999].   

Method vs. different Method direct comparisons were made, as well as repeatability tests for each specific 

Method.  In general, larger magnitude relative errors were achieved when the probability level was 

somewhat extreme (𝑝 < 0.15 or 𝑝 > 0.95) and/or the ratio 𝑟 very small.  These characteristics also 

contributed to infrequent integral equation convergence problems when the mean-value was not zero.   

Identical observations as the above are also applicable to the results of Table 5.5.3.5-1 (Performance 

Summary for SE_XX Calculations), with the exception of the use of 3𝑥3 error covariance and 3𝑥1 mean-

values.  

As mentioned above, both “Method versus Method Comparison” tests and “Method Repeatability” tests 

were made.  Methods consisted of Table Interpolation (Table_Interp), Monte Carlo Covariance Square 

Root (MC_Cov_sqrt), and Integral Equation (IE) methods for the computation of CE_XX or SE_XX.   
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Table_Interp assumed an error mean-value of zero by definition, MC_Cov_sqrt usually assumed an 

arbitrary mean-value, and IE was tested with both a mean-value of zero and an arbitrary mean-value. 

Table_Interp assumed fixed probability levels, and all other methods (unless compared to Table_Interp) 

assume arbitrary probability levels, randomly selected (uniform distribution) within the interval 

[0.1,0.999]. 

For Method versus Method Comparison tests, the number of independent samples was specified.  Thus, 

if 1000 were specified, there were 1000 pairs of CE_XX (or SE_XX) calculated for comparison, each pair 

generated using an error covariance matrix and mean-value generated randomly for that specific pair, 

and for a randomly selected (uniform distribution) probability within the interval [0.1,0.999] for that 

specific pair.    (The latter was not applicable if one of the methods was Table_Interp , which utilizes fixed, 

specified probability levels XX.) 

For Method Repeatability tests, the number of independent samples was specified as above and a 

corresponding error covariance matrix and mean-value generated randomly for each sample.  In addition, 

the number of perturbations was specified over which sample statistics of the CE_XX or SE_XX calculations 

were computed for that sample.  For the MC_Cov_sqrt method, perturbations consisted of independent 

sets of 1E6 random vectors 𝑛𝑖 used in the calculation of CE_XX or XE_XX.  For the IE method, perturbations 

consisted of different initial estimates of CE_XX or SE_XX used to solve the integral equation.  The initial 

estimate for the first perturbation is the standard low-fidelity deterministic estimate as implemented in 

the pseudo-code.  Each subsequent perturbation equaled (1 + d)*(first perturbation), where d is a uniform 

random number within the interval [-0.2,0.2]. 

The summary performance results presented in Table 5.5.2.6-1 for CE_XX and Table 5.5.3.5-1 for SE_XX 

are from the integrated results of the combined tests.  For a given Method, its repeatability test provides 

the statistical results of inherent calculation error.  All methods have a repeatability test other than 

Table_Interp.  Its inherent calculation error is determined by its comparison to IE (mean zero), from which 

the entries for the interpolation table were generated.  In addition, various combinations of Method 

versus Method comparison tests were also performed, essentially as QA checks on the repeatability tests. 

For a given sample in a Method versus Method Comparison test, the primary metric is defined as relative 

% difference between the two methods: 100*(CE_XX_Method_1 – CE_XX_Method_2)/CE_XX_Method_2, 

with a similar metric defined for SE.  Sample statistics of this performance metric are then taken over all 

of the samples. 

For a given sample in a Method Repeatability test, the (internal) sample standard deviation about the 

(internal) sample mean is taken over all corresponding perturbations and the performance metric 

computed as % of the (internal) sample standard deviation relative to the (internal) sample mean, i.e., 

100*(standard deviation/mean). In addition, for a given sample, the maximum deviation of all 

perturbations relative to the sample mean is computed relative to the (internal) sample mean, i.e., 

100*(max deviation/mean). Sample statistics for both of these performance metrics are then taken over 

all samples.  



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
152 

Note that the various tests also provided timing results corresponding to the pseudo-code (MATLAB).  All 

comparison and repeatability tests, along with their timing results, were entered into spread-sheets.  

Summary results corresponding to these various spread-sheets are plotted below, with related 

comments. 

In general, when a non-zero mean was added, the Integral Equation (IE) solution for CE (Equation (5.5.2-

2) became more difficult and time-consuming relative to the use of a mean-value of zero.  The solution 

involves an iterative search over numerical evaluation of the integral such that the resultant probability is 

near the specified amount on the left side of the equation.  This adverse effect was much more 

pronounced for the Integral Equation (IE) solution for SE (Equation 5.5.3-2 ) since searches were over 3-

space instead of 2-d space. 

C.3.1 Circular Error (CE) 

For a given sample, the error covariance matrix and mean-value (if not specified zero) were randomly 

computed as follows: 

The error covariance was randomly generated per sample about the mean-value as: 

𝐶𝑜𝑣𝑟𝑎𝑛𝑑𝑜𝑚 = 4 [
𝑢1 𝑢3√𝑢1 × 𝑢2

𝑢3√𝑢1 × 𝑢2 𝑢2
], where u1 and u2 are random and independent samples 

from a (0,1) uniform distribution, and u3 a random and independent sample from a (-1,1) uniform 

distribution.  The square root of the smallest to largest eigenvalue was also guaranteed/checked as 

𝑟 ≥0.00001, 0.02, and 0.05 for tests involving MC_Cov_sqrt, IE (mean zero), and IE (mean not zero), 

respectively. 

The mean value, if not specified as zero for the test, was randomly generated as �̅�𝑟𝑎𝑛𝑑𝑜𝑚 = 4 [
𝑢4
𝑢5

], where 

u4 and u5 are random and independent samples from a (-1,1) uniform distribution. 

C.3.1.1 CE Method Repeatability Tests 

(1) Table_Interp: not applicable 

(2) MC_Cov_sqrt:1000 samples and 50 perturbations per sample 
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(3)IE (mean zero):1000 samples and 10 perturbations per sample 
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 (4) IE (mean value arbitrary):1000 samples and 10 perturbations per sample 
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As further representation detail, for the above test, the maximum, average, and minimum values 

randomly selected over the 1000 cases for probability were 0.9980, 0.5520, and 0.1003, respectively;  the 

maximum, average, and minimum values for the ratio 𝑟 were 0.9989, 0.4683, and 0.0506, respectively 

C.3.1.2 CE Method versus Method Comparison Tests 

(1) Table_Interp vs. IE (mean zero):10000 samples (2000 for each of 5 fixed probability levels) 
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Note: if above prob >=0.9, max difference is 0.05. 

(2) MC_Cov_sqrt vs. IE (mean zero):1000 samples 

 

(3) MC_Cov_sqrt vs. IE (mean value arbitrary):1000 samples 
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C.3.2 Spherical Error (SE) 

For a given sample, the error covariance matrix and mean-value (if not zero) were randomly computed as 

follows: 

The error covariance was randomly generated per sample about the mean-value as: 

𝐶𝑜𝑣𝑟𝑎𝑛𝑑𝑜𝑚 = 4 [
𝑢1 𝑢4√𝑢1 × 𝑢2 𝑢5√𝑢1 × 𝑢3

. 𝑢2 𝑢6√𝑢2 × 𝑢3

. . 𝑢3

], where u1, u2, and u3 are random and independent 

samples from a (0,1) uniform distribution, and u4, u5, and u6 are random and independent sample from 

a (-1,1) uniform distribution.  The generated covariance matrix also checked/guaranteed positive definite.  

Also, the square root of the smallest to largest eigenvalue was also guaranteed/checked as 𝑟 ≥0.00001, 

0.02, and 0.10 for tests involving MC_Cov_sqrt, IE (mean zero), and IE (mean not zero), respectively. 

The corresponding mean-value is computed as �̅�𝑟𝑎𝑛𝑑𝑜𝑚 = 4 [
𝑢7
𝑢8
𝑢9

], where u7, u8, and u9 are random and 

independent samples from a (-1,1) uniform distribution. 

C.3.2.1 SE Method Repeatability Tests 

(1) Table_Interp: not applicable 

(2) MC_Cov_sqrt:1000 samples and 50 perturbations per sample 
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(3)IE (mean zero):1000 samples and 10 perturbations per sample 
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(4) IE (mean value arbitrary):1000 samples and 10 perturbations per sample 
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C.3.2.2 SE Method versus Method Comparison Tests 

(1) Table_Interp vs. IE (mean zero):1000 samples 
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Note if p>=0.9, max is 0.05 

(2) MC_Cov_sqrt vs. IE (mean zero):1000 samples 

 
(3) MC_Cov_sqrt vs. IE (mean value arbitrary):1000 samples 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
162 

 

C.3.3 Summary of Tests 

In the above Method Comparison tests, results were consistent with the repeatability tests for both 

methods involved – the difference was basically consistent with the repeatability test for the method with 

statistically larger computation errors. 

Regarding Method Repeatability tests, there were variations (on the order of a factor of 2 or 3) between 

Integral Equation repeatability test result subcases: mean value equals zero and mean value arbitrary.  

This was primarily due to limited statistical significance associated with the number of samples and 

perturbations.   (They were kept to reasonable numbers for reasonable test times.)  Thus, when 

summarizing results in the main body, the “worst” results were reported across mean-zero and mean-not 

zero variations.   

Although not specifically shown in the above test results, during the various comparison test results, it 

became apparent that the solution for the Integral Equation Method did not always converge.  This 

problem occurred about 0.2 % of the  time when the mean-value was arbitrary, and where probability 

was allowed to vary within the interval [0.1,0.999}.  When convergence did not occur, the resultant 

relative error could be as large as 40%.  However, in virtually all cases, the problem could be detected by 

noting that the number of iterations in the MATLAB code equaled the (specified) maximum and/or the 

function code equaled more than twice the number of iterations.   

Miscellaneous other Tests 

Two other categories of calculation error tests were performed: p=0.999 and LE Integration.  The former 

held the probability level fixed at the extreme high level, and was performed for both Table_Int versus IE 
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(mean zero) and MC_Cov_sqrt repeatability.  Although the number of test samples were limited for 

convenience, test results were consistent with the previous test results where probability levels varied.   

The LE Integration test was for arbitrary mean values and provided results as good as for CE Integration 

and had no convergence issues. 

In addition to calculation error performance, timing results for all of the various methods were also 

tabulated with results summarized in Table 5.5.2.6-1 (CE_XX) and Table 5.5.3.5-1  (SE_XX).  

 

 

 Generalized spdcf-based generation of a Multi-State Vector 

error covariance matrix 

D.1 Introduction   

This appendix was referenced in Section 5.9.3 and presents the generalized method for spdcf-based 

generation of a multi-state vector error covariance matrix.  It includes the spdcf-based generation method 

presented in Section 5.9.3.1 as a sub-capability.  However, the more general cases that it can handle and 

that the less-general method cannot are sometimes less “intuitive” regarding “a priori error modeling”, 

as discussed and illustrated in reference [9]   

D.2 Method/Algorithm 

The following assumes three state vectors of interest in the multi-state vector as well as one correlation 

subgroup per state vector for convenience of notation.  The three state vectors correspond to the same 

stochastic process at three different times; or alternatively, the same random field at three different 

spatial locations.  

The assembly method can utilize a different spdcf for each component of a state vector whether its 

components are (intra-state vector) correlated or not.  Of course, component definitions are assumed 

common across the state vectors. 

The generalized spdcf assembly method/algorithm is described as follows: 

𝑋 = [

𝑋1

𝑋2

𝑋3

],            (D.2-1) 

where the dimension of 𝑋1, 𝑋2, and 𝑋3 are all 𝑛1𝑥1 and the dimension of the multi-state vector 𝑋 is 𝑛𝑥1, 

where 𝑛 = 3𝑛1. 

The 𝑛 × 𝑛 multi-state vector (error) covariance matrix is defined as: 

𝐶𝑋 ≡ 𝐸{𝜖𝑋𝜖𝑋𝑇} assuming that 𝐸{𝜖𝑋} = 0𝑛×1,        (D.2-2) 
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and 

𝐶𝑋 = [

𝐶𝑋1 𝐶𝑋12 𝐶𝑋13

𝐶𝑋21 𝐶𝑋2 𝐶𝑋23

𝐶𝑋31 𝐶𝑋32 𝐶𝑋3

].         (D.2-3) 

 

𝐶𝑋1 ,𝐶𝑋2, and 𝐶𝑋3 are given         (D.2-4) 

and assumed valid error covariance matrices for (errors in) 𝑋1, 𝑋2, and 𝑋3, respectively, i.e., are symmetric 

and positive definite and not necessarily equal in value.  

The 𝑛1 spdcf common to the 𝑛1 elements of 𝑋1  𝑋2, and  𝑋3, are also given:     

𝜌(𝛿𝑡𝑖𝑗)𝑘, 𝑘 = 1, . . , 𝑛1,           (D.2-5) 

where 𝛿𝑡𝑖𝑗 = |𝑡𝑖 − 𝑡𝑗| and 𝑖 and 𝑗 correspond to the time (or spatial location) of the state vectors 𝑋𝑖  and 

𝑋𝑗.  In general, the 𝑛1 different spdcf are not functionally equal or even from the same spdcf family.   

However, they can be. 

 

𝐶𝑋𝑖𝑗 ≡ 𝐶𝑋𝑖
1/2

𝑆𝑖𝑗𝐶𝑋𝑗
1/2

, where  𝑖, 𝑗 = 1, . . ,3 and 𝑖 ≠ 𝑗,       (D.2-6) 

𝐶𝑋𝑖
1/2

 is the 𝑛1 × 𝑛1 (symmetric and positive definite) principal matrix square root of 𝐶𝑋𝑖, 

and the 𝑛1 × 𝑛1 diagonal matrix 𝑆𝑖𝑗 ≡ [

𝜌(𝛿𝑡𝑖𝑗)1 0

0 𝜌(𝛿𝑡𝑖𝑗)2

. . 0
0 . .

 . .  . .
  0 . .                

. .           . .
0 𝜌(𝛿𝑡𝑖𝑗)𝑛1

].  Further note that since 𝛿𝑡𝑖𝑗 =

|𝑡𝑖 − 𝑡𝑗|, 𝑆𝑗𝑖 = 𝑆𝑖𝑗.  Also, 𝐶𝑋𝑗𝑖 = 𝐶𝑋𝑖𝑗
𝑇 . 

(The symbology 𝑆𝑖𝑗 was chosen to indicate the use of spdcf in the matrix; the principal matrix square root 

of a matrix A in MATLAB is equal to “sqrtm(A)”.) 

 

Based on the above, we can rewrite the assembled multi-state vector (error) covariance matrix as: 

𝐶𝑋 = [

𝐶𝑋1 𝐶𝑋1
1/2

𝑆12𝐶𝑋2
1/2

𝐶𝑋1
1/2

𝑆13𝐶𝑋3
1/2

𝐶𝑋2
1/2

𝑆21𝐶𝑋1
1/2

𝐶𝑋2 𝐶𝑋2
1/2

𝑆23𝐶𝑋3
1/2

𝐶𝑋3
1/2

𝑆31𝐶𝑋1
1/2

𝐶𝑋3
1/2

𝑆32𝐶𝑋2
1/2

𝐶𝑋3

] .      (D.2-7) 

 

D.3 Properties 
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 If the various 𝐶𝑋𝑖 are equal, then: 

o all of the cross-covariance 𝐶𝑋𝑖
1/2

𝑆𝑖𝑗𝐶𝑋𝑗
1/2

= 𝐶𝑋1
1/2

𝑆𝑖𝑗𝐶𝑋1
1/2

 are symmetric and 𝐶𝑋 

corresponds to a stationary process. 

o all of the cross-covariance 𝐶𝑋𝑖
1/2

𝑆𝑖𝑗𝐶𝑋𝑗
1/2

= 𝑆𝑖𝑗𝐶𝑋1 if and only if the spdcf 𝜌(𝛿𝑡𝑖𝑗)𝑘, 𝑘 =

1, . . , 𝑛1, are identical, in which case the baseline method is equal to the generalized 

method.   

 If the spdcf are not all the same and if 𝑆𝑖𝑗𝐶𝑋1 were used instead of 𝐶𝑋1
1/2

𝑆𝑖𝑗𝐶𝑋1
1/2

 

in the generalized method, the resultant covariance 𝐶𝑋 is in general invalid (one 

or more negative eigenvalues) 

 

D.4 Proof that assembled covariance matrix is valid 

Equation (D.2-7) is equivalent to the following: 

𝐶𝑋 = [

𝐶𝑋1
1/2

0 0

0 𝐶𝑋2
1/2

0

0 0 𝐶𝑋2
1/2

] [

𝐼𝑛1×𝑛1
𝑆12 𝑆13

𝑆21 𝐼𝑛1×𝑛1
𝑆23

𝑆31 𝑆32 𝐼𝑛1×𝑛1

] [

𝐶𝑋1
1/2

0 0

0 𝐶𝑋2
1/2

0

0 0 𝐶𝑋2
1/2

]

𝑇

,   (D.4-1) 

which is the product of a full-rank matrix, times a symmetric positive definite matrix, times the transpose 

of the full-rank matrix.  Hence, 𝐶𝑋 is symmetric and is also a positive definite matrix per [page 399, 23]. 

Note: (1) the first and third matrix in Equation (D.4-1) are full rank since they are positive definite (positive 

definite ⟹ invertible ⟹ full rank) and (2) the middle matrix in Equation (D.4.1) is positive definite per the 

definition and properties of spdcf (see [5,7,8]). 

The fact that the middle matrix is positive definite is more apparent if the elements in 𝑋 were re-ordered 

as component 1 in 𝑋1, component 1 in 𝑋2, component 1 in 𝑋3, component 2 in 𝑋1, … , etc., which yields 

the following 𝑛𝑥𝑛 middle matrix presented for insight only: 

[

𝐴13𝑥3 03𝑥3

03𝑥3 𝐴23𝑥3

. . 03𝑥3

. . 03𝑥3
. . . .

03𝑥3 03𝑥3

. . . .

. . 𝐴𝑛13𝑥3

], where the symmetric matrix 𝐴𝑘 = [
1 𝜌(𝛿𝑡12)𝑘 𝜌(𝛿𝑡13)𝑘

. 1 𝜌(𝛿𝑡23)𝑘

. . 1

],  

𝑘 = 1, . . , 𝑛1. 

Note that if one were to actually implement the above reordering, the first and last matrices in Equation 

(D.4-1) would have to change as well consistent with the reordering, which is neither practical nor intuitive 

for an actual application. 

D.5 Examples 

Example 1 
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2 individual state vectors, each with 2 elements or components in one correlation sub-group.  The sub-

group is common to the individual state vectors by definition, and may also be considered a correlation 

group in this example, since there is only one sub-group by assumption. 

The error covariance matrices for each state vector are the same and are equal to: 

𝐶𝑋1 = 𝐶𝑋2 = [
1 . 5
. 5 2

], with intra-state vector correlation coefficient equal to 
0.5

√1×2
= 0.35. 

One state vector corresponds to time 𝑡1 and the other to time 𝑡2.  Component 1 in the state vectors 

corresponds to spdcf 𝜌(𝛿𝑡12)1 and component 2 corresponds to spdcf 𝜌(𝛿𝑡12)2; actual values are equal 

to 𝜌(𝛿𝑡12)1 = 0.9 and 𝜌(𝛿𝑡12)2 = 0.3.  These spdcf values are the inter-state vector correlation 

coefficients.  Although not specifically identified functionally, the two spdcf are indeed different per their 

specified and different values at 𝛿𝑡12. 

Based on Equation (D.2-7): 

𝐶𝑋 = [

1 . 5
. 5 2

0.8734 0.2734
0.2734 0.6266

0.8734 0.2734
0.2734 0.6266

1 . 5
. 5 2

]. 

 

Note that 𝐶𝑋1
1/2

= 𝐶𝑋2
1/2

= [
0.9776 0.214
0.214 1.3985

] and 𝑆12 = [
0.9 0
0 0.3

].  Also the 4 eigenvalues of 𝐶𝑋 are all 

strictly positive.  The state vectors correspond to a stationary (stochastic) process. 

Example 2 

Same as Example 1 except that: 

𝐶𝑋1 = 𝐶𝑋2 = [
1 −.5

−.5 2
]. 

Based on Equation (7): 

𝐶𝑋 = [

1 −.5
−.5 2

0.8734 −0.2734
−0.2734 0.6266

0.8734 −0.2734
−0.2734 0.6266

1 −.5
−.5 2

], with 4 eigenvalues that are all strictly positive. 

The state vectors correspond to a stationary (stochastic) process. 

Example 3 

2 individual state vectors, each with 2 elements or components in one correlation sub-group. 

The error covariance matrix for each state vector are different (a non-stationary process) and are equal 

to: 
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𝐶𝑋1 = [
1 . 5
. 5 2

] and 𝐶𝑋2 = [
. 8 . 4
. 4 1.2

]. 

One state vector corresponds to time 𝑡1 and the other to time 𝑡2.  Component 1 in the state vectors 

corresponds to spdcf 𝜌(𝛿𝑡12)1 and component 2 corresponds to spdcf 𝜌(𝛿𝑡12)2; actual values are equal 

to 𝜌(𝛿𝑡12)1 = 0.9 and 𝜌(𝛿𝑡12)2 = 0.3.  These spdcf values are the inter-state vector correlation 

coefficients. 

Based on Equation (D.2-7): 

𝐶𝑋 = [

1 . 5
. 5 2

0.7789 0.2487
0.2511 0.4903

0.7789 0.2511
0.2487 0.493

. 8 . 4

. 4 1.2

]. 

Note that if component one corresponds to an error in 𝑥, component two corresponds to an error in 𝑦, 

and subscripts correspond to the particular state vector, we have: 

𝐸{𝜖𝑥1𝜖𝑦2} = 𝐸{𝜖𝑦2𝜖𝑥1} = 0.2487 ≠ 𝐸{𝜖𝑦1𝜖𝑥2} = {𝜖𝑥2𝜖𝑦1} = 0.2511. 

That is, the upper right 2𝑥2 block and the lower left 2𝑥2 block in 𝐶𝑋 are not symmetric because 𝐶𝑋1 ≠

𝐶𝑋2.  The state vectors correspond to a non-stationary (stochastic) process. 

Example 4 

3 individual state vectors, each with 3 elements or components in one correlated sub-group. 

The error covariance matrices for each state vector are the same and are equal to: 

 𝐶𝑋1 = 𝐶𝑋2 = 𝐶𝑋3 = [
1 0.7 0.5

0.7 2 0.6
0.5 0.6 1.5

], with 3 strictly positive eigenvalues and a common principal matrix 

square root equal to: 

𝐶𝑋1
1/2

= [
0.9360 0.847 0.2070
0.2487 1.3690 0.2116
0.2070 0.2116 1.1884

]. 

There are three different spdcfs (decaying exponentials with different time constants equal to 3, 1, and 2 

seconds, respectively) corresponding to the three components and also three different times equal to 1, 

2, and 3 seconds, respectively, corresponding to the 3 state vectors.  The corresponding 𝑆 matrices are 

equal to: 

𝑆12 = 𝑆23 = [
0.7165 0 0

0 0.3679 0
0 0 0.6065

], and 𝑆13 = [
0.5134 0 0

0 0.1353 0
0 0 0.3679

]. 

For example, the first diagonal element of 𝑆13 corresponds to 𝑒−|𝑡1−𝑡3|/𝑇1 = 𝑒−|1−3|/3 = 0.5134. 

Based on Equation (D.2-7), 𝐶𝑋 =    
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and has 9 strictly positive eigenvalues.  Also each 3𝑥3 cross covariance is symmetric per the first property 

of Section D.3.  The state vectors correspond to a stationary (stochastic) process. 

 

 Example of spdcf-based band-width reduction 

This appendix presents a more detailed description of the band-width reduction example of Section 5.9.2.  

It includes some redundancy for context and ease-of-reading. 

 

A batch WLS adjustment was performed to correct or “register” 6 large stereo-pairs of WorldView-1 

imagery.  The adjustment solved for 9 sensor parameter corrections per image, consisting of 3 sensor 

position offset, 3 sensor attitude offset, and 3 sensor attitude rate corrections.  (These parameters affect 

the ground location to pixel location correspondence.)  In addition, 748 tie points were automatically 

measured between overlapping images (516 2-way tie points and 232 4-way tie points), and each of their 

corresponding 3d locations were solved for in the adjustment as well.  (The tie point image measurements 

provide “linkage” between the images as well as corresponding ground points.)   Thus, the entire state 

vector for solution consisted of 108+2244=2352 elements.  In addition, the solution for the 748 tie points 

and their 2244𝑥2244 portion of the 2352𝑥2352 full solution (a posteriori) error covariance matrix were 

saved.  Default a priori error covariance matrices for the sensor parameters for adjustment were used per 

Digital Globe, including (non-diagonal) error cross-covariance matrices associated with the temporal 

correlation of sensor parameters for same-pass images generated based on an spdcf, and 0.5 pixel (one-

sigma) a priori error covariance matrices were used for all (line,sample) image measurements, which were 

assumed uncorrelated between line and sample coordinates, as well as between measured points. 

 

The above (saved) solution is the 2244𝑥1 multi-state vector of interest consisting of 748 individual (but 

correlated) 3𝑥1 (tie point) state vectors, and the corresponding 2244𝑥2244 multi-state vector error 

covariance matrix consisting of 3𝑥3 block-diagonals for each tie point and 3𝑥3 cross-blocks for each tie 

point pair.  These are of interest to internal or down-stream processing as “derived” ground control, along 

with their (full) error covariance matrix for appropriate weighting as well as characterization of (absolute 

and relative) predicted accuracy.   

 

1.0000 0.7000 0.5000 0.6836 0.3609 0.3102 0.4765 0.2057 0.1981

0.7000 2.0000 0.6000 0.3609 0.7747 0.3013 0.2057 0.3117 0.1620

0.5000 0.6000 1.5000 0.3102 0.3013 0.9038 0.1981 0.1620 0.5476

0.6836 0.3609 0.3102 1.0000 0.7000 0.5000 0.6836 0.3609 0.3102

0.3609 0.7747 0.3013 0.7000 2.0000 0.6000 0.3609 0.7747 0.3013

0.3102 0.3013 0.9038 0.5000 0.6000 1.5000 0.3102 0.3013 0.9038

0.4765 0.2057 0.1981 0.6836 0.3609 0.3102 1.0000 0.7000 0.5000

0.2057 0.3117 0.1620 0.3609 0.7747 0.3013 0.7000 2.0000 0.6000

0.1981 0.1620 0.5476 0.3102 0.3013 0.9038 0.5000 0.6000 1.5000
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Figure E-1 presents corresponding (post-registration) predictive (absolute) CE and LE as they vary across 

the region, with the tie point footprints included.  These values were derived from the block-diagonals of 

the multi-state vector error covariance matrix. 

 

 
Figure E-1: CE (left) and LE (right) for all tie points (2-way and 4-way) from batch registration solution’s 

multi-state vector error covariance matrix (plus overlay of 12 image footprints making up the 6 stereo 

pairs) 

 

Furthermore, it was also desirable to approximate the multi-state vector error covariance matrix using 

the spdcf method, yielding an approximate 1:560 reduction in bandwidth.  Only the unique error 

covariance matrix elements per individual state vector need be saved, as well as a few parameters defining 

the spdcf(s) used.  (In reality, this is a relatively small example in terms of number of images and ground 

points for ease of illustration; thus, even larger bandwidth reductions are applicable in general.)  

 

The approximation process consisted of first transforming the multi-state vector error covariance matrix 

to an equivalent error covariance matrix but relative to a local tangent plane system centered at the 

middle of the footprints.  Two correlation subgroups were then identified, one corresponding to x-y 

horizontal location errors, and the other to vertical location errors.  Each correlation subgroup had its own 

spdcf: a separable spdcf consisting of the product of two spdcf of CSM four-parameter form, one a 

function of north-south distance (WorldView-1 scan direction in this example) and the other a function of 

east-west distance.   

 

(For an individual image prior to registration, spatial correlation of image location errors due to sensor 

support data errors is generally high in the scan direction and even higher in the cross-scan direction.  

However, following registration, and expressed as ground location errors relative to stereo-models, it is 

generally higher in the scan-direction, as the cross-scan direction crosses stereo models.) 
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The spdcf were fit to the correlations of each point-pair computed using the original multi-state vector 

error covariance matrix, described as follows.   

 

Each spdcf is specified by four parameters {𝐴,𝛼,𝑏𝑒𝑡𝑎,𝐷}.  A collection of correlation (coefficient) values 

was computed using all tie point-pairs and the original multi-state vector error covariance matrix.  There 

was a collection of x-x and y-y correlations used for correlation subgroup 1, and a separate collection of 

z-z correlations for correlation subgroup 2.  (Note that x-x correlation corresponds to the correlation 

coefficient of point i’s x error with point j’s x error, for instance.)  For a given correlation subgroup, the 

values of correlation corresponding to minimal distances dictated the 𝐴 (initial spdcf) values; those 

corresponding to very long distance dictated the 𝛼 (spdcf floor, as computed by the product of 𝐴 times 𝛼) 

values, and the general shape of the correlation trend over the range of distances dictated the 𝑏𝑒𝑡𝑎 

(shape) value.  The subsequent distance constants 𝐷 were solved via a search technique to minimize the 

corresponding sum of fit residuals squared, holding the 𝐴, 𝛼, 𝑏𝑒𝑡𝑎 values fixed, and with initial 

approximations for the 𝐷 values.  (This technique can be augmented to include searching for a subset of 

the other three parameters, if so desired.)  Results are as follows: 

 

SPDCF Parameters XY: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 65,000 meters 

               NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 65,000 meters 

 

SPDCF Parameters Z: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 30,000 meters 

            NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 60,000 meters 

 

An example of spdcf fit results is shown next for the (composite) spdcf for correlation group 1 (x and y 

error), and specifically for x-x correlations versus E-W distance (FigureE-2) and x-x correlations versus N-S 

distance (Figure E-3).  Note that there are non-negligible fit residuals, not unexpected due to the use of 

both 2-way and 4-way tie points in the WLS batch registration solution, a relatively small number of 

images, and no external ground control (measured points with known 3d locations); thus, solution spatial 

correlation characteristics are not homogenous across the entire area (footprints), and sometimes 

concentrate in color-coded bands that correspond to the stereo models (footprints). 
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Figure E-2: spdcf x-x fit results versus E-W distance 

 

 
Figure E-3: spdcf x-x fit results versus N-S distance 

 

After generating the spdcfs, the corresponding approximate multi-state vector error covariance matrix 

was then assembled per Section 5.8 and tested for fidelity.  The test involved the predictive absolute CE 

(abs_CE) and predictive absolute LE (abs_LE) computed for each tie point, and the predictive relative CE 

(rel_CE) and the predictive relative LE (rel_LE) computed for each tie point pair, once using the assembled 

approximate error covariance matrix and once using the original error covariance matrix.  (The units for 

absolute and relative CE and LE are meters; see Section 5.5 and Section 5.6.4 for predictive CE and LE 

computation details.) 

 

The following presents predicted accuracy summary results graphically, essentially “approximation” 

versus “original”, where all applicable units are meters.  Only rel_CE and rel_LE results are shown, as the 
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abs_CE and abs_LE results were identical between approximation and original, and thus consistent with 

Figure 5.9.1-1, as expected.   

 

 

 
 

Figure E-4: rel_CE (left) and rel_LE (right) comparison results using two correlation subgroups; 

approximation versus original (blue) 

 

In Figure E-4 (left), the x-axis corresponds to rel_CE computed using the original error covariance matrix 

for a tie point pair, and the corresponding y-axis value (blue dot) corresponds to rel_CE computed using 

the approximate error covariance matrix for the same tie point pair.  (Thus, a value intersecting the 45 

degree black line is a perfect “match”; corresponding comparisons are also applicable to rel_LE in the 

figure on the right.)   

 

In general, the approximation does a reasonable job in the computation of rel_CE and rel_LE; hence, the 
approximate multi-state vector error covariance matrix does a reasonable job of capturing the original 
correlations.  And, of course, its corresponding individual 2𝑥2 block-diagonals for x and y, and its 1𝑥1 
block-diagonal for z are exact. 

(In general, predictive absolute CE and LE are larger than their predictive relative CE and LE counterparts, 

whether based on the original or approximate error covariance, due to the high correlation of 3d 

coordinate errors between tie point pairs, induced by the batch WLS registration process.) 

 

Next, the same process described above was repeated, but using only one correlation subgroup, instead 
of two.  It consisted of (x,y,z) coordinate errors.  The approximate error covariance matrix will have exactly 
the same 3x3 error covariance block-diagonals for each individual state vector (tie point) as does the 
original error covariance matrix; thus, even more fidelity than the process using two correlation 
subgroups.  However, there will be some degradation in spdcf fitting in that all correlations (x-x,y-y,z-z) 
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affect the one composite correlation function.  This may degrade somewhat the corresponding rel_CE and 
rel_LE values relative to the original values.   

Results are as follows:  The spatial correlation of one correlation subgroup (x,y,z) was approximately the 
same as that for two correlation subgroups described previously.  The defining spdcf parameters for one 
correlation subgroup were as follows:  

SPDCF Parameters XYZ: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 50,000 meters 

   NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 65,000 meters 

In addition, corresponding rel_CE and rel_LE results were virtually identical to those of Figure 5.9.1-4 
presented earlier for two correlation subgroups – there was no degradation going from two correlation 
subgroups to one. 

Therefore, one correlation subgroup was selected.  Correspondingly, the spdcf method to approximate 

the multi-state vector error covariance matrix of interest yielded “perfect” predicted absolute accuracy 

results relative to the original multi-state error covariance matrix, and arguably “reasonable” predicted 

relative accuracy results (correlations) relative to the original multi-state vector error covariance matrix.  

And, of course, corresponding bandwidth was reduced and the assembled error covariance matrix valid.  

Also, the amount of band-width reduction and fidelity of predicted relative accuracy results should 

improve for other examples using a larger number of stereo models. 

The following puts the adjective “reasonable” for the above predicted relative accuracy results in 

perspective: The above one correlation subgroup experiment was repeated, but this time the approximate 

error covariance matrix had cross-covariance matrices set identically equal to zero, i.e., the spdcf was not 

used and the 3d location errors were simply assumed uncorrelated for convenience.  Comparison of 

results for rel_CE and rel_LE are provided in Figure E-5.  The blue dots correspond to the earlier results 

for one correlation subgroup (not explicitly shown, previously), and the red dots to the results when an 

spdcf was not used.  As can be seen in Figure E-5, the spdcf is essential. 
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Figure E-5: rel_CE (left) and rel_LE (right) comparison results using one correlation subgroup; 

approximation versus original (blue); no spdcf approximation versus original (red) 

 

Finally, the following presents a little more detail regarding the earlier experiment that used an spdcf and 

one correlation subgroup (Figure E-5, blue) for more insight. Three (tie) points were identified, the first 

(“point 1”) in the East-most stereo block, the second (“point 2”) a few miles away, and the third (“point 

3”) far away in the West-most stereo block (see Figure E-1).  TableE-1 details the corresponding original 

error covariance 3𝑥3 block-diagonals (covariance) for points 1, 2, and 3, and cross-blocks (cross 

covariance) between points 1-2 and 1-3.  It also details the corresponding block-diagonals and cross-blocks 

from the approximate error covariance.  Note that with the spdcf method for approximation, the block-

diagonals are identical to the original’s, and the cross-blocks reasonably close, where the approximation’s 

cross-bock is equal to the spdcf value, as a function of E-W and N-S distance between the point pair, times 

the product of the 3𝑥3 matrix square-roots of the corresponding block-diagonals. 
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Table E-1: Detailed entries in the original multi-state vector error covariance matrix and its 

approximation corresponding to three tie point locations 

 

 

0.229309 -0.018282 -0.061085 0.236344 -0.019243 -0.061363 0.189307 -0.010358 -0.007122

-0.018282 0.263734 0.041796 -0.019243 0.275447 0.038539 -0.010309 0.220159 -0.025033

-0.061085 0.041796 1.231333 -0.061363 0.038539 1.258364 -0.007569 -0.024517 0.824708 SPDCF

0.229309 -0.018282 -0.061085 0.236344 -0.019243 -0.061363 0.202324 -0.016284 -0.053343 0.232799 -0.018737 -0.061378

-0.018282 0.263734 0.041796 -0.019243 0.275447 0.038539 -0.016317 0.234239 0.035539 -0.018775 0.269523 0.040892

-0.061085 0.041796 1.231333 -0.061363 0.038539 1.258364 -0.053081 0.034328 1.081818 -0.061077 0.039499 1.244771

0.229309 -0.018282 -0.061085 0.310256 -0.038443 0.185617 0.103921 0.001154 -0.006354

-0.018282 0.263734 0.041796 -0.038443 0.295410 -0.145693 0.006575 0.107450 0.022589

-0.061085 0.041796 1.231333 0.185617 -0.145693 1.518881 0.058934 0.007636 0.516280

0.229309 -0.018282 -0.061085 0.310256 -0.038443 0.185617 0.116026 -0.008805 0.001767 0.257265 -0.019524 0.003917

-0.018282 0.263734 0.041796 -0.038443 0.295410 -0.145693 -0.009543 0.123378 -0.005536 -0.021160 0.273567 -0.012275

-0.061085 0.041796 1.231333 0.185617 -0.145693 1.518881 0.041998 -0.033909 0.610016 0.093122 -0.075186 1.352593
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0.450997

Point 1 Covariance Other Point Covariance Cross Covariance Approximation Cross Covariance is the

product of the SPDCF and the

Product of Matrix Square Root

Product of Matrix Square Root

0.869090


